Overview of collection efficiency (CE): Standard vaporizer vs Capture vaporizer

Weiwei Hu

2018-04-20

AMS user's meeting @ Nanjing

Collection efficiency definition

Mass loading based:

 $C = \frac{10^{12}}{\text{IE}} \frac{1}{Q} \frac{\text{MW}}{N_A} \cdot I$

CE_sRIE_s is largest uncertainty in mass concentration calculations

Number counting based:

Canagaratna et al. AMS clinic meeting, 2015; Cross et al. 2007;

Collection efficiency definition

Canagaratna et al. 2007; Huffman et al. 2005

CE from field and laboratory work

SV

Species: Organic aerosol, Sulfate

Collection efficiency (CE) depends on :

- 1) Nitrate content
- 2) Acidity/neutralization
- 3) Relative humidity in the sampling line
- 4) Organic liquid content

Much of this driven by aerosol phase:Solid/semisolid/liquid particleSolids bounceLiquids do not bounce

Typically contribute the most uncertainty for ambient aerosol measurement

Middlebrook et al., AST, 2012; Canagaratna et al. AMS clinic meeting, 2015

Values of CE: Laboratory work

Pure inorganic chemical compounds:

- $NH_4NO_3 = 1$
- (NH4)₂SO₄ = 0.2-0.5 (dry condition)
- $NH_4CI = 0.2-0.4$

Matthew et al. 2008; Hu et al. 2017

Values of CE: Laboratory work

CEs for Mixed of nitrate and sulfate vary with NO₃ content, humidity, and liquid organic coating.

Values of CE: Laboratory work

Laboratory SOA usually> 0.2 (Range observed, dependence on f_{44})

Docherty et al. 2012

Values of CE : ambient aerosol

- CE=0.5 (±0.15) in average: empirical composition dependence (Middlebrooks et al. AS&T 2012)
- Pure laboratory particles are poor models for ambient mixed particles, but similar trend with humidify and NO₃ (State of particles in ambient or in AMS after transmission through lens)

Uncertainty of AMS quantification 30%-40% for ambient organic and inorganic quantification based on comparison with other independent measurement-Bahreini et al. 2009

Mass based CE vs counting based CE

Liao et al., 2017

Collection efficiency definition

 $CE=E_L$ (lens) × E_s (scattering) × E_b (Bounce)

<u>minor</u>

<u>minor</u>

<u>Major</u>

Lens transmission

Lens transmission curve for PM₁

Lens transmission curve for PM_{2.5}

 $d_{\rm m}$ =213 nm for NH₄NO₃ 1.2 IPL lens pressure ~ 3.8 torr (a) OAMS $1.0 \cdot$ ---- NH₄NO₃ with SMPS correction Eq. 5 0.8 ----- NaNO₃ Eq. 3 E_L PSL Eq. 3 0.6 mini-ToF-AMS NH₄NO₃ 0.4 -O Eq. 4 with CPMA Eq. 5 with CPMA 0.2 -US EPA WINS PM_1 lens pressure ~ 1.3 torr 0.0 6 8 2 2 Standard lens (Liu et al. 2007) 8 6 100 1000 Vacuum aerodynamic diameter d_{va} (nm)

How to calibrate your lens

- Particle counts based: Event trigger and BFSP:
 ✓ faster
 - \checkmark Do not need to worry about double charge particles.
- Mass based: different size-resolved particles
 - Pay attention to the double charge particles; impactor should be used !
- >200-500 nm (NH₄)₂SO₄, NH₄NO₃ at 600 °C
 >Or other species NaNO₃ and KNO₃ at 800 °C

Collection efficiency definition

 $CE=E_L$ (lens) × E_s (scattering) × E_b (Bounce)

<u>minor</u>

<u>minor</u>

<u>Major</u>

Particle Beam Width Probe

Huffman et al. 2009

Particle beam transmission

Huffman et al. 2005

Particle beam width for different

<u>particles</u>

<u>Summary</u>

 $\Box E_b$ (Bounce) is the major contributor for CE; $\Box E_L$ (Lens) and E_s (scattering) are minor.

Another way to think about CE

Feature of standard vaporizer (SV) vs capture vaporizer (CV)

Species: Organic aerosol, Sulfate

Standard vaporizer temperature (T_v) : 600°C

Collection efficiency (CE) depends on : Chemical composition Aerosol phase etc

Typically contribute the most uncertainty for ambient aerosol measurement
 AMS quantification uncertainty 30-40% of ambient aerosols.

Outlook of SV and CV

Temperature measurement for CV

Experiment setup :

Outline

- Does capture vaporizer make CE~1 ?
- Does the capture vaporizer preserve or diminish the chemical and physical information from AMS?
 - Fragmentation and OA source identification?
 - Size distribution
 - Gas-phase CO₂(g) and artifact chloride formation in CV
- Pros and cons of SV vs CV

CE of standard inorganic species CE=AMS/CPC mass ratio

An improvement in CE of inorganic species in the CV

Shown results are carried out under medium vaporizer temperature 500-600C

Lens transimission corrections for NaNO₃ $d_m=300nm \rightarrow d_{va}=670$ nm

CE of ambient aerosols

Multiple results support ambient CE in CV =1

Evaluation on chemical composition CE correction

RIE between SV versus CV

	SV	CV	
NO3	1.1	1.1	Default
NH4	3-6 (3-15 for ToF- ACSM)	3-6	Experimental measured (NH ₄ NO ₃)
SO4	1.1-1.3	1.1-2.4	Experimental measured $((NH_4)_2SO_4)$
chloride	1.3	1.4	Experimental measured (NH ₄ Cl)
OA	?	?	

Hu et al AST 2017; Hu et al AMT 2017; Xu et al. AS&T 2018

Brief reasons for different RIE

More masses collected

➢ Faster decay

Different ionization precursors from thermal decomposition (SV: H₂SO_{4(g)}/SO_{2(g)}/SO_(g) vs CV: SO_(g)/SO_{2(g)})

➢Other possible reasons

Outline

- Does capture vaporizer make CE~1 ?
- Does the capture vaporizer preserve or diminish the chemical and physical information from AMS?
 - Fragmentation and OA source identification?
 - Size distribution
 - Gas-phase CO₂(g) and artifact chloride formation in CV
- Pros and cons of SV vs CV

Fragmentation pattern of inorganic NH₄NO₃

Fragmentation pattern of organic species

the larger molecular-weight fragments of OA tend to shift toward smaller ions in the CV due to additional thermal decomposition.

Fragmentation pattern of organic species

- This shifting happened independent of OA types and oxidation levels
- Excess CO⁺ (H₂O⁺ to a less extent) is observed when sampling long-chain alkene/alkane like species, not in highly oxidized and ambient OA
- □ Unexpected CO⁺ (H₂O⁺) ion formation might be caused by chemical reaction on the vaporizer surfaces.

Hu et al., AST. 2018

Excess H_2O^+ and CO^+ ions in the CV

38

PToF show CO peak similar with aerosol phase

Unexpected CO⁺ (H₂O⁺) ion formation might be caused by catalytic reaction on the vaporizer surfaces.

Hu et al., AST. 2018

Causes for artifact CO enhancement

$Mo+3/2 O_2 \rightarrow MoO_3$

Fig. 2. Photographs of molybdenum specimens: A, unreacted; B, 600°C; 76 Torr, 420 min; C, 1200°C, 76 Torr, 8½ min; D, 1600°C, 76 Torr, 7 min. Magnification, approximately 5X.

Class	Reaction conditions	Oxidation phenomena	
1	Below 450°C	Adherent oxide films or scales form.	
2	500°-700°C	Oxide scales form also oxide volatilizes, low pressure fa- vors volatility of oxide.	
3	801°C to transition temperature	Liquid oxide can form, volatil- izes as soon as oxide forms.	
4	Above transition temperature	Oxide volatilizes as fast as it forms.	
⁸⁰ [Gulbransen et al. 1963	
% Conversion or Yield	v Overall Conversion A Yield of Maleic Anhydride O Yield of Acrolein Yield of CO _x V CO/CO ₂ CO/CO ₂ CO/CO/CO ₂ CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Ozkan et al., 1990

Hu et al., AST 2018

Elemental ratio calibration: standard species

Aiken explicit calibration method (Aiken et al. 2007;2008)

Hu et al., ACS ES&C. 2018

Ambient

Elemental ratio comparison: ambient OA

Aiken ambient method for CV: $CO^+/CO_2^+=1$; $H_2O^+/CO_2^+=0.225$; IA method for SV

The elemental composition of ambient OA can be accurately measured with the CV, with suitable modifications to the quantification procedure.

Similar PMF results for SV vs CV

IEPOX-SOA: Isoprene epoxydiols-derived SOA

Summary of PMF comparison

Hu et al., ACS ES&C. 2018

Outline

- Does capture vaporizer make CE~1 ?
- Does the capture vaporizer preserve or diminish the chemical and physical information from AMS?
 - Fragmentation and OA source identification?
 - Size distribution
 - Gas-phase CO₂(g) and artifact chloride formation in CV
- Pros and cons of SV vs CV

Degradation of size-resolved detection in CV

300 nm monodisperse particle NH₄NO₃

Temperature dependent size distribution

Estimating vaporizer temperature for detecting species in size mode

Size distribution of ambient aerosol in CV still work

Outline

- Does capture vaporizer make CE~1 ?
- Does the capture vaporizer preserve or diminish the chemical and physical information from AMS?
 - Fragmentation and OA source identification?Size distribution
 - Gas-phase CO₂(g) and artifact chloride formation in CV
- Pros and cons of SV vs CV

Production of $CO_2(g)$ is negligible for the CV for NH_4NO_3 and comparable to the SV for $NaNO_3$.


```
Chloride artifact
```


NaCl(s)+HNO₃(g) \rightarrow HCl(g)+NaNO₃(s) (Harkel 1997).

Hu et al., AMT. 2017

Excellent

Acceptable Less desirable

	SV	CV
CE for ambient particles	Middlebrook et al. (2012)	CE=1
CE for pure inorganics in lab	Variable bounce fraction	<=1 but better than SV
Slowly evolving signals from bounced particles on colder ionizer surfaces	Significant	Nearly eliminated
Ambient size distribution	Good resolution	Sufficient resolution
Lab & Chamber size distribution	Good resolution	Low resolution for monodisperse particles
Single particle IE calibration	Routinely doable	Not yet demonstrated
CPC-based IE calibration	Routinely doable	Routinely doable
Extent of thermal decomposition	Significant	Greater than SV
Nitrate quantif. (organic vs. inorganic)	Useful even under low S/N	Less contrast and lower S/N
SO ₄ UMR quantification under high OA	More OA interferences	Lower OA interferences
Nitrate \rightarrow CO ₂ artifact ("Pieber effect")	Important in some cases	Much lower for NH ₄ NO ₃ , similar for NaNO ₃
Nitrate \rightarrow Chloride artifact	Observable but small	Smaller than SV
CO^+/H_2O^+ artifact from OA	Not observed	Observed for reduced OA species
Elemental ratio for ambient aerosols	Good after applying referenced calibration	Good after applying referenced calibration
PMF factor separation	Reasonable	Reasonable, larger uncertainties for sub- OOA factors
OA tracer retained	Reasonable	Key tracers were preserved.

Summary

- CE ~1 for ambient aerosols!
- Mass spectra shifted to smaller fragments.
 - But information content (e.g. OA sources and elemental ratios) not lost!!
 - Unexpected CO⁺ (H₂O⁺) when sampling long chain alkane/alkene-like OA (e.g. squalene), potentially due to chemical reaction on the vaporizer surfaces, whereas no such enhancement for ambient OAs.

Slower evaporation impacts size distributions

- Still OK for ambient air.
- Much broader for monodisperse lab exp.
- Future analysis:
 - OA quantification: Oxidation and heating effect
 - Characterization on more primary OA, e.g., biomass burning, cooking, coal combustion
 - Chamber SOA

Thanks for your attention.

References

References for CE:

Matthew, B. M., Middlebrook, A. M., and Onasch, T. B. (2008). Collection efficiencies in an Aerodyne Aerosol Mass Spectrometer as a function of particle phase for laboratory generated aerosols, Aerosol Sci Tech. 42, 884-898, Doi 10.1080/02786820802356797

Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R. (2012). Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data, Aerosol Sci Tech. 46, 258-271, 10.1080/02786826.2011.620041

Docherty, K. S., Jaoui, M., Corse, E., Jimenez, J. L., Offenberg, J. H., Lewandowski, M., and Kleindienst, T. E. (2013). Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols, Aerosol Sci Tech. 47, 294-309, 10.1080/02786826.2012.752572

Bahreini, R., Ervens, B., Middlebrook, A. M., Warneke, C., de Gouw, J. A., DeCarlo, P. F., Jimenez, J. L., Brock, C. A., Neuman, J. A., Ryerson, T. B., Stark, H., Atlas, E., Brioude, J., Fried, A., Holloway, J. S., Peischl, J., Richter, D., Walega, J., Weibring, P., Wollny, A. G., and Fehsenfeld, F. C. (2009). Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas, Journal of Geophysical Research: Atmospheres. 114, D00F16, 10.1029/2008jd011493

Liao, J., Brock, C. A., Murphy, D. M., Sueper, D. T., Welti, A., and Middlebrook, A. M. (2017). Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection, Atmos. Meas. Tech. 10, 3801-3820, 10.5194/amt-10-3801-2017

Robinson, E. S., Onasch, T. B., Worsnop, D., and Donahue, N. M. (2017). Collection efficiency of α-pinene secondary organic aerosol particles explored via light-scattering singleparticle aerosol mass spectrometry, Atmos. Meas. Tech. 10, 1139-1154, 10.5194/amt-10-1139-2017

• References for capture vaporizer:

Xu, W., Croteau, P., Williams, L., Canagaratna, M., Onasch, T., Cross, E., Zhang, X., Robinson, W., Worsnop, D., and Jayne, J. (2017). Laboratory characterization of an aerosol chemical speciation monitor with PM2.5 measurement capability, Aerosol Sci Tech. 51, 69-83, 10.1080/02786826.2016.1241859

Hu, W., Campuzano-Jost, P., Day, D. A., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L. (2017). Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species, Atmos. Meas. Tech. 10, 2897-2921, 10.5194/amt-10-2897-2017

Hu, W., Campuzano-Jost, P., Day, D. A., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L. (2017). Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species, Aerosol Sci Tech. 51, 735-754, 10.1080/02786826.2017.1296104

Hu, W., Day, D. A., Campuzano-Jost, P., Nault, B. A., Park, T., Lee, T., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L. (2018). Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA), ACS Earth and Space Chemistry, 10.1021/acsearthspacechem.8b00002

Hu, W. W., Campuzano-Jost, P., Day, D. A., Nault, B. A., Park, T., Lee, T., Croteau, P. L., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L. (2018). Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS): characterization of organic aerosol (OA) mass spectra, Aerosol Sci Tech. accepted

Zhang, Y., Tang, L., Croteau, P. L., Favez, O., Sun, Y., Canagaratna, M. R., Wang, Z., Couvidat, F., Albinet, A., Zhang, H., Sciare, J., Prévôt, A. S. H., Jayne, J. T., and Worsnop, D. R. (2017). Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China, Atmos. Chem. Phys. 17, 14501-14517, 10.5194/acp-17-14501-2017