HOMEWORK SET 4
 SPRING 2021

INSTRUCTOR: YI LIU

* Due Monday May 10, 2021. For reference of special cube complexes, see:
[HW] F. Haglund and D. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), no. 5, 1551-1620.

1. Let S be an orientable closed surface of genus two with a presentation of its fundamental group $\left(a_{1}, b_{1}, a_{2}, b_{2} ;\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right]\right)$ as usual. (We adopt the notation $[a, b]=a b a^{-1} b^{-1}$ for a commutator.) Construct an explicit finite quotient of $\pi_{1}(S)$ separating $c=\left[a_{1}, b_{1}\right]$ from the subgroup $\left\langle a_{1}, a_{2}\right\rangle$.
2. Let $G=F_{1} \times \cdots \times F_{m}$ be a direct product of finitely generated free groups. Show that G is isomorphic to a right-angled Artin group.
3. Let Γ be a cyclic graph of $n \geq 3$ vertices, (so the vertices are v_{i} and the edges are $\left[v_{i}, v_{i+1}\right]$, for all $i \in \mathbb{Z} / n \mathbb{Z}$. Compute the Euler characteristic of the right-angle Artin group associated to Γ, (that is, the Euler characteristic of the Salvetti complex $\operatorname{ART}(\Gamma)$ as in [Section 2.3, HW]).
4. Let X and Y be (connected) finite-dimensional cube complexes. If Y is nonpositively curved and if $f: X \rightarrow Y$ is a local isometry, show that X is nonpositively curved and that f is π_{1}-injective. (Hint: See [Lemma 2.11, HW]. Fill in details reflecting your comprehension.)
5. Are right-angled Artin groups all torsion-free? Justify your answer.
