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Reading Assignment: Weeks 5 and 6

In Weeks 5 and 6, we aim at understanding the complete
hyperbolic structure on the figure-eight knot complement. The
reading assignment is as follows.

» [Thu, Chapter 4, Sections 4.1-4.3]

» [Rat, Sections 8.5 and part of 10.5 (up to the uniqueness of
complete hyperbolic structures)]

The first three sections of [Thu, Chapter 4] constructs the
hyperbolic structure on a figure-eight knot complement, and
establishes the uniqueness. The same treatment is elaborated in
[Rat, Section 10.5]. However, to understand the main concern of
this part, that is, completeness, you need to read [Rat, Section
8.5], which translates the usual (Riemannian) metric geometric
notion into a convenient form for transformation geometries.
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Hyperbolic structures on the figure-eight knot complement

There is a basic remark that you need to keep in mind: When
people say that a compact 3—manifold is hyperbolic, they usually
means that the interior of the 3—manifold admits a complete
hyperbolic structure. However, this is not the case when people
talk about hyperbolic structures on a 3—manifold with an ideal
triangulation.

In the latter context, a hyperbolic structure is often allowed to be
incomplete, and in particular, this applies to the materials that you
are going to read in the coming two weeks.
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Hyperbolic structures on the figure-eight knot complement

You have already seen that the figure-eight knot complement
admits an ideal triangulation. Or, see [Rat, Section 10.3] if you
have not done so.

To obtain a possibly incomplete hyperbolic structure, it is natural
to try to hyperbolize each of the ideal tetrahedra, which means to
identify it with a geodesic ideal hyperbolic tetrahedron. We must
require that for any edge of the glued-up manifold, the dihedral
angles around that edge should sum up to be 2x. In this way, at
least any point on the edge will have a neighborhood isometric to
a hyperbolic 3—ball of some small radius.
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Hyperbolic structures on the figure-eight knot complement

The above condition will be translated into a system of polynomial
equations, with unknowns each corresponds to a tetrahedron.

You will see that the shape (=isometric type) of any ideal
hyperbolic geodesic tetrahedron can be described with a complex
number z above the real axis. There are some redundancy, for
example, (z —1)/z and 1/(1 — z) describe the same shape with
permuted vertex labelings. The equations are then written down to
describe the dihedral angle sum conditions, for the edges of the
glue-up manifold.

Finding a hyperbolic structure therefore amounts to finding a
solution to these equations. The first part of [Rat, Section 10.5]
studies the complete hyperbolic structure obtained from its
corresponding solution.
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How about the incomplete hyperbolic structures?

You will also obtain a space of solutions to the gluing equations,
and all the other solutions describe an incomplete hyperbolic
structure on the figure-eight knot complement.

It is a natural next step to consider metric completion of those
incomplete structures. Then several possibilities may occur: The
metric completion may be closed hyperbolic 3-manifolds, or
3—orbifolds, or some more nasty spaces that you don't want to
study topologically. The first case will be the most interesting,
leading to the so-called Dehn surgery invariants. This will be the
next topic of our course, but we will spend another two weeks on it
and investigate more general situations.
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