HOMEWORK SET 7 SPRING 2016

INSTRUCTOR: YI LIU

- * Due Tuesday May 31, 2016.
- 1. For matrices $A, B \in SL_2(\mathbb{C})$, prove the following trace identities $tr(A)tr(B) = tr(AB) + tr(AB^{-1})$.
- 2. For matrices $A, B \in \mathrm{SL}_2(\mathbb{C})$, prove the following statements:
 - (1) If tr(A) = tr(B) = 2, and A, B do not have a common eigenvector, then $tr(AB) \neq 2$.
 - (2) If $tr(A) \neq 2$, and A, B do not have a common eigenvector, then they can be conjugated so that A is diagonal, and B has an entry 1 at the upper-right place.
- 3. Let π be a group generated by two elements. If $\rho, \rho' : \pi \to \mathrm{SL}_2(\mathbb{C})$ are two irreducible representations such that $\chi_{\rho}(g) = \chi_{\rho}(g')$ for all $g \in \pi$, show that ρ is conjugate to ρ' . (Remark. In fact, this holds for any group π .)
- 4. Let $\rho: \pi \to \operatorname{SL}_2(\mathbb{C})$ be a representation of a finitely generated group π . Show that ρ is reducible if and only if for every element c of the commutator subgroup $[\pi, \pi]$, $\chi_{\rho}(c) = 2$. (*Hint*: For the 'if' direction, show that some 1-dimensional subspace L of \mathbb{C}^2 is preserved by all $c \in [\pi, \pi]$, then it follows that L is preserved by π under ρ .)