HOMEWORK SET 6 SPRING 2017

INSTRUCTOR: YI LIU

* Due Wednesday May 17, 2016.

1. For complete closed hyperbolic 3-manifolds, state the Mostow Rigidity in geometric terms and grouptheoretic terms. Verify that they are equivalent.

2. Let $U_1, U'_1, \dots, U_k, U'_k$ be 2k half-spaces (bounded by hyperplanes) in \mathbb{H}^3 such that their closures in $\mathbb{H}^3 \cup \partial_{\infty} \mathbb{H}^3$ with respect to the natural compactification are pairwise disjoint. Suppose that g_i is an orientationpreserving isometric transformation that takes $\mathbb{H}^3 \setminus U_i$ to U_i , for each $i = 1, \dots, k$. The subgroup $\Gamma = \langle g_1, \dots, g_k \rangle$ of $\mathrm{Isom}_+(\mathbb{H}^3)$ arising from this construction is called a (3-dimensional) Schottky group of rank k. Show that Γ is isomorphic to a free group of rank k. Does it satisfy the conclusion of the Mostow rigidity? Justify your answer.

3. Let Γ be a Schottky group of rank k. Show that \mathbb{H}^3/Γ is homeomorphic with the interior of a compact handle-body with k handles. (*Hint*: You may want to decompose $\partial_{\infty}\mathbb{H}^3$ into the *limit set* $\Lambda(\Gamma)$ and the *domain of discontinuity* $\Omega(\Gamma)$ with respect to the action of Γ . Learn these terms from available sources if you haven't seen them before. Then $(\mathbb{H}^3 \cup \Omega(\Gamma))/\Gamma$ will be a compact handle-body with k handles.)