HOMEWORK SET 6 SPRING 2016

INSTRUCTOR: YI LIU

- * Due Tuesday May 3, 2016.
- 1. Use Margulis' Lemma to conclude that for sufficiently small $\epsilon > 0$, the ϵ -thin part of a hyperbolic 3-manifold has one of the three possible shapes: a solid torus, or a rank-1 cusp, or a rank-2 cusp.
- 2. Show that if a torsion-free subgroup of $PSL_2(\mathbb{C})$ has nontrivial center, it must be abelian. In particular, virtually nilpotent subgroups of $PSL_2(\mathbb{C})$ are virtually abelian.
- 3. Let G be a finitely generated group with generators x_1, \dots, x_n and relators r_1, \dots, r_m which are words of the generators. The set R(G) of $\mathrm{SL}_2(\mathbb{C})$ -representations of G can be identified as $f^{-1}(I, \dots, I)$ of the map:

$$f: \mathrm{SL}_2(\mathbb{C})^{\times n} \to \mathrm{SL}_2(\mathbb{C})^{\times m}$$

defined to be $f(A_1, \dots, A_n) = (r_1(A_1, \dots, A_n), \dots, r_m(A_1, \dots, A_n))$. This endows R(G) with a topology induced by the (Lie group) topology of $SL_2(\mathbb{C})$.

- (1) Verify that the induced topology of R(G) does not depend on the choice of the generators and relators.
- (2) For any homomorphism $\phi: G \to H$ between finitely generated groups, show that there is an induced continuous map $\phi^*: R(H) \to R(G)$. It is an embedding if ϕ is surjective.
- (3) Identify R(G * H) with $R(G) \times R(H)$.