HOMEWORK SET 5 SPRING 2017

INSTRUCTOR: YI LIU

* Due Wednesday May 3, 2016.

1. A discrete subgroup of $PSL_2(\mathbb{C})$ is said to be *elementary* if it has a finite orbit in $\mathbb{H}^3 \cup \hat{\mathbb{C}}$. If Γ is a torsion-free discrete subgroup of $PSL_2(\mathbb{C})$ without parabolic elements, show that every nontrivial elementary subgroup of Γ is infinite cyclic. (*Hint*: Show that any such subgroup must preserve a common geodesic.)

2. Suppose that M is a compact orientable 3-manifold with at least one boundary component of genus > 1. Show that the interior of M does not admit a complete hyperbolic structure of finite volume.

3. A sequence of discrete subgroups $(\Gamma_n)_{n\in\mathbb{N}}$ of $\mathrm{PSL}_2(\mathbb{C})$ is said to converge geometrically to a discrete subgroup Γ_{∞} , if every $g_{\infty} \in \Gamma_{\infty}$ is the limit of some sequence $(g_n \in \Gamma_n)_{n\in\mathbb{N}}$. If Γ_n are infinite cyclic, is it true that Γ_{∞} is infinite cyclic?