HOMEWORK SET 4 SPRING 2016

INSTRUCTOR: YI LIU

* Due Tuesday April 19, 2016.

- 1. Let M be an orientable compact 3-manifold with boundary a finite collection of tori P_1, \dots, P_m . A Dehn filling N of M is given by gluing M and a collection of solid tori $V_i = S^1 \times D^2$ by homeomorphisms $P_i \cong \partial V_i$. Denote by $s_i \subset P_i$ be the simple closed curve given by $* \times \partial D^2$ via the homeomorphism.
 - (1) Show that the homeomorphism type of N is determined by the isotopy class of c_i on P_i . In other words, a Dehn filling is determined by the slope that it fills.
 - (2) Show that if d_i is any simple closed curve of T_i that intersects c_1 exactly once, then d_i is homotopic to the core curve $S_1 \times *$ of V_i in N.
- 2. Use the gluing equation and the holonomy of the vertex link to show the following statement. For any given $\epsilon > 0$, there are only finitely many hyperbolic Dehn fillings of the figure-eight knot complement such that the length of (the unique geodesic representative of) the core curve is greater than ϵ . In other words, most hyperbolic Dehn fillings have a short core.
- 3. If T is an ideal hyperbolic tetrahedron with dihedral angles α, β, γ , then Milnor's formula asserts

$$Vol_{\mathbb{H}}(T) = \Lambda(\alpha) + \Lambda(\beta) + \Lambda(\gamma)$$

where

$$\Lambda(\theta) = -\int_0^{\theta} \log|2\sin u| \mathrm{d}u$$

is the Lobachevsky function, (see Chapter 7 of Thurston's notes). Use this fact to conclude that the maximum volume of ideal hyperbolic tetrahedra is achieved by the regular ideal tetrahedron. It follows that the complete hyperbolic structure of the figure-eight complement is greater than any of its hyperbolic Dehn fillings.