HOMEWORK SET 3
 SPRING 2016

INSTRUCTOR: YI LIU

* Due Tuesday April 5, 2016.

1. Construct a complete hyperbolic 3-manifold by gluing up the sides of a regular ideal tetrahedron. The manifold M is called the Gieseking manifold. Show that the link of the cusp point of M is a Klein bottle.

2 Suppose that M is an orientable closed hyperbolic 3-manifold. Show that $\pi_{1}(M)$ does not contain a subgroup isomorphic to $\mathbb{Z} \times \mathbb{Z}$. (Hint: Maybe you need to show first that any such subgroup would be parabolic.)
3. For any ideal tetrahedron T of \mathbb{H}^{3}, show that the dihedral angles at opposite edges are equal to each other.
4. A horocusp $V=B / \Gamma$ is the quotient of a horoball $B \subset \mathbb{H}^{3}$ by a discrete rank-two parabolic subgroup Γ which stabilizes B. (So V is homeomorphic to $T^{2} \times[0,+\infty)$.) Show that $\operatorname{Area}_{\mathbb{H}}(\partial V)=\operatorname{Vol}_{\mathbb{H}}(V)$.

