HOMEWORK SET 1 SPRING 2017

INSTRUCTOR: YI LIU

* Due Wednesday March 8, 2017.

1. Using the distance formula

$$d_B(u, v) = \operatorname{arccosh}\left(1 + \frac{2|u - v|^2}{(1 - |u|^2)(1 - |v|^2)}\right)$$

for the conformal disk model $B^3 = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : |x| < 1\}$ with the Riemannian metric $ds_B = 2|dx|/(1-|x|^2)$, derive the distance formula for the upper half space model $U^3 = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\}$ and the upper half space model of the hyperbolic 3-space \mathbb{H}^3 with the Riemannian metric $ds_U = |dx|/x_3$.

2. Denote by B(r) the disk of radius r in \mathbb{H}^2 . Compute the area of B(r) and the length of $\partial B(r)$. Conclude that

$$\operatorname{Area}_{\mathbb{H}^2}(B(r)) < \operatorname{Length}_{\mathbb{H}^2}(\partial B(r)).$$

3. Consider the following fractional linear transformation of the extended complex plane $\widehat{\mathbb{C}}$:

$$f(z) = \frac{2iz+1}{z-i}$$

Explicitly describe the isometry ϕ of \mathbb{H}^3 induced by f via the Poincaré extension. Namely, identify enough geometric features of ϕ (such as the type, the axis, the rotation angle or translation distance, and so on) so that ϕ can be completely determined.

4. Using the upper half space model \mathbf{U}^3 , show that every element $g \in \text{Isom}_+(\mathbb{H}^3) \cong \text{PSL}(2,\mathbb{C})$ can be written as a product of factors

g=kan

where k is a rotation about (0,0,1), and a is a loxodromic transformation that fixes 0 and ∞ on $\partial_{\infty} \mathbb{H}^3 \cong \mathbb{C} \cup \{\infty\}$, and n is a parabolic transformation that fixes ∞ . (This is called the *Iwasawa Decomposition* of Isom₊(\mathbb{H}^3).)