HOMEWORK SET 1
 SPRING 2017

INSTRUCTOR: YI LIU

* Due Wednesday March 8, 2017.

1. Using the distance formula

$$
\mathrm{d}_{B}(u, v)=\operatorname{arccosh}\left(1+\frac{2|u-v|^{2}}{\left(1-|u|^{2}\right)\left(1-|v|^{2}\right)}\right)
$$

for the conformal disk model $B^{3}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}:|x|<1\right\}$ with the Riemannian metric $\mathrm{d} s_{B}=$ $2|\mathrm{~d} x| /\left(1-|x|^{2}\right)$, derive the distance formula for the upper half space model $U^{3}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}>\right.$ $0\}$ and the upper half space model of the hyperbolic 3 -space \mathbb{H}^{3} with the Riemannian metric $\mathrm{d} s_{U}=|\mathrm{d} x| / x_{3}$.
2. Denote by $B(r)$ the disk of radius r in \mathbb{H}^{2}. Compute the area of $B(r)$ and the length of $\partial B(r)$. Conclude that

$$
\operatorname{Area}_{\mathbb{H}^{2}}(B(r))<\operatorname{Length}_{\mathbb{H}^{2}}(\partial B(r))
$$

3. Consider the following fractional linear transformation of the extended complex plane $\widehat{\mathbb{C}}$:

$$
f(z)=\frac{2 i z+1}{z-i}
$$

Explicitly describe the isometry ϕ of \mathbb{H}^{3} induced by f via the Poincaré extension. Namely, identify enough geometric features of ϕ (such as the type, the axis, the rotation angle or translation distance, and so on) so that ϕ can be completely determined.
4. Using the upper half space model \mathbf{U}^{3}, show that every element $g \in \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right) \cong \operatorname{PSL}(2, \mathbb{C})$ can be written as a product of factors

$$
g=k a n
$$

where k is a rotation about $(0,0,1)$, and a is a loxodromic transformation that fixes 0 and ∞ on $\partial_{\infty} \mathbb{H}^{3} \cong$ $\mathbb{C} \cup\{\infty\}$, and n is a parabolic transformation that fixes ∞. (This is called the Iwasawa Decomposition of Isom $_{+}\left(\mathbb{H}^{3}\right)$.)

