HOMEWORK SET 1 SPRING 2016

INSTRUCTOR: YI LIU

* Due Tuesday March 8, 2016.

- 1. Denote by $\mathbf{U}^3 = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\}$ the upper half space model of the hyperbolic 3-space \mathbb{H}^3 with the metric $\mathrm{d} s_{\mathbf{U}} = |\mathrm{d} x|/x_3$, and by $\mathbf{B}^3 = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : |x| < 1\}$ the unit ball model where the metric $\mathrm{d} s_{\mathbf{B}} = 2|\mathrm{d} x|/(1-|x|^2)$. Find an explicit isometry between \mathbf{U}^3 and \mathbf{B}^3 .
- 2. Denote by B(r) the disk of radius r in \mathbb{H}^2 . Compute the area of B(r) and the length of $\partial B(r)$. Conclude that

$$Area_{\mathbb{H}^2}(B(r)) < Length_{\mathbb{H}^2}(\partial B(r)).$$

- 3. Prove that all horospheres of \mathbb{H}^3 are conjugate. That is, for any two horospheres S and S' of \mathbb{H}^3 , there exists an isometry of \mathbb{H}^3 that takes S to S'.
- 4. For any isometric transformation $g \in \text{Isom}_+(\mathbb{H}^3)$, define the translation distance of g to be

$$\operatorname{td}(g) \, = \, \inf_{x \in \mathbb{H}^3} d_{\mathbb{H}^3}(x, \, g.x).$$

Show that the translation distance is 0 if g is elliptic or parabolic, and strictly positive if g is loxodromic. For $g \in \operatorname{PSL}(2,\mathbb{R})$ with $\operatorname{tr}^2(g) > 4$, compute $\operatorname{td}(g)$ in terms of $\operatorname{tr}^2(g)$.

5. Using the upper half space model \mathbf{U}^3 , show that every element $g \in \mathrm{Isom}_+(\mathbb{H}^3) \cong \mathrm{PSL}(2,\mathbb{C})$ can be written as a product of factors

$$q = kan$$

where k is a rotation about (0,0,1), and a is a loxodromic transformation that fixes 0 and ∞ on $\partial_{\infty}\mathbb{H}^3 \cong \mathbb{C} \cup \{\infty\}$, and n is a parabolic transformation that fixes ∞ . This is known as the *Iwasawa Decomposition* of $\mathrm{Isom}_+(\mathbb{H}^3)$.