HOMEWORK SET 1

SPRING 2016

INSTRUCTOR: YI LIU

* Due Tuesday March 8, 2016.

1. Denote by $\mathbf{U}^{3}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}>0\right\}$ the upper half space model of the hyperbolic 3 -space \mathbb{H}^{3} with the metric $\mathrm{d} s_{\mathbf{U}}=|\mathrm{d} x| / x_{3}$, and by $\mathbf{B}^{3}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}:|x|<1\right\}$ the unit ball model where the metric $\mathrm{d} s_{\mathbf{B}}=2|\mathrm{~d} x| /\left(1-|x|^{2}\right)$. Find an explicit isometry between \mathbf{U}^{3} and \mathbf{B}^{3}.
2. Denote by $B(r)$ the disk of radius r in \mathbb{H}^{2}. Compute the area of $B(r)$ and the length of $\partial B(r)$. Conclude that

$$
\operatorname{Area}_{\mathbb{H}^{2}}(B(r))<\operatorname{Length}_{\mathbb{H}^{2}}(\partial B(r)) .
$$

3. Prove that all horospheres of \mathbb{H}^{3} are conjugate. That is, for any two horospheres S and S^{\prime} of \mathbb{H}^{3}, there exists an isometry of \mathbb{H}^{3} that takes S to S^{\prime}.
4. For any isometric transformation $g \in \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$, define the translation distance of g to be

$$
\operatorname{td}(g)=\inf _{x \in \mathbb{H}^{3}} d_{\mathbb{H}^{3}}(x, g \cdot x)
$$

Show that the translation distance is 0 if g is elliptic or parabolic, and strictly positive if g is loxodromic. For $g \in \operatorname{PSL}(2, \mathbb{R})$ with $\operatorname{tr}^{2}(g)>4$, compute $\operatorname{td}(g)$ in terms of $\operatorname{tr}^{2}(g)$.
5. Using the upper half space model \mathbf{U}^{3}, show that every element $g \in \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right) \cong \operatorname{PSL}(2, \mathbb{C})$ can be written as a product of factors

$$
g=k a n
$$

where k is a rotation about $(0,0,1)$, and a is a loxodromic transformation that fixes 0 and ∞ on $\partial_{\infty} \mathbb{H}^{3} \cong$ $\mathbb{C} \cup\{\infty\}$, and n is a parabolic transformation that fixes ∞. This is known as the Iwasawa Decomposition of Isom $_{+}\left(\mathbb{H}^{3}\right)$.

