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Probability Exercises

1 Basic tools

1.1 Best constant approximation
Let m be a median of X, i.e., P{X <m} >1/2 and P{X > m} > 1/2.

1. m € argmin, E|X — z|.

b—a)(1—-2-1 2(a — X)1
Proof. If a < b, then | X —b| — | X —a| = (b—a)( txzop) +2(a JLacx <) . This implies
(b—a)(2- Lix<ay — 1) +2(b— X)]l{a<X<b}

that = — E|X — z| is nonincreasing on (—oo,m] and is nondecreasing on [m, o). O
2. |[EX —m| < /Var(X).
Proof. |EX —m| <E|X —m| < E|X — z| < /E|X — z|?, Vz. O

3. EX = argmin, E|X — x|

Proof. E|X —x]? =E|X —EX — (z —EX)|? =E|X —EX|]? + |z — EX|% O

1.2 Integration — layer cake representation

1. (Integrability) Let X > 0. Then EX < oo if and only if > P{X > n} < oco.

Proof. Note that EX = [[*P{X >a}de =3 ", [  P{X > 2} dx, where for n — 1 < # < n one has
]P’{X>n}§P{X>a:}§]P’{X>n—1}.
Therefore, Y " P{X >n} <EX <1+ ° P{X >n}. a

2. (Exponential decay) If P{X > z} = O(¢*) as z — oo for some g € (0, 1), then Ee'* < oo for some ¢ > 0.
The converse is also true, due to Chernoff’s bound.

Proof. Since P{e!X > n} = P{X > log(n)/t} < g8/t = plos(@)/t it suffices that t < —log(q). O

31X LY, then E[X +Y|—E[X Y| =2 [ (P{X > u} — P{X < —u}) (P{Y > u} — P{Y < —u})du
(Shepp) If X and YV are i.i.d., then E|X + Y| > E|X — Y|, with equality holding if and only if X L_X.

Proof. To begin with, denote by P and @ the distributions of X and Y, respectively. Then
EX+Y)" = fooo P{X+Y > t}dt = [ps Lpso)Ljatys>e dP(2)dQ(y)dt
= fRB ly>— u]]l[T>u dP( )dQ( )
= [T P{X > u}P{Y > —u}du
= [ (P{X > u}P{Y > —u} + P{X > —u}P{Y > u})du
Similarly, E(X +Y)” = [["P{X+Y < —t}dt = [~ (P{X < u}P{Y < —u} +P{X < —u}P{Y <u})du.
E(X —Y)" = [ (P{X > u}P{Y < u} +P{X > —u}P{Y < —u})du,

E(X -Y)" = [[7 (P{X < u}P{Y > u} + P{X < —u}P{Y > —u})du. Therefore,

By symmetry, {

EX+Y|-EX-Y|=(EX+Y)" +EX + Y)*) - (IE(X - Y)+ +E(X -Y)")
= (E(X +Y)T ~E(X - Y)*) - (E(X -Y)” —E(X +Y)")
= [ (P{X > u} + P{X > —u}) (P{Y > u} P{Y < —u})du
— [ (P{X < u} + P{X < —u}) (P{Y > u} — P{Y < —u})du
=2 77 (P{X >u} —P{X < —u}) (P{Y > u} — P{Y < —u})du,
since 1(_y,00) = L(—oo,u) = L(u,00) = L(—o0,—u)- O
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1.3

1.

1.4

Generalized second Borel-Cantelli lemma

(Paley—Zygmund) If X > 0 with 0 < EX < oo, then P{X > tEX} > (1 —t)*(EX)?/EX?, Vt € [0,1].

Proof. EX = EX1xsinx) + EXLix<inx) < VEX?2P{X > tEX} +tEX. O

. (Chung-Erdés) If Ay, ..., A, are events, then P(Uy_, Ax) > [2op_, P(Ax)]?/ 307 -1 P(Ai N Aj).

Proof. Apply the Paley—Zygmund inequality to X =Y, 14, with ¢t = 0. O
(Kochen—Stone) If 372 | P(Ay) = oo, then P(A, i.0.) > limsup,, .. [>"p_, P(A)]*/ 307 ,— P(Ai N Aj).

First Proof. Let x,, = [Y;_; P(Ax)]? and y, = Y. ._; P(4; N 4;). By the Chung-Erdés inequality, we

i,j=1
have y,, > x, — 00 as n — oo, and then using the fact that Z?jzmﬂ P(A;NA;) < Yn — Ym,
oo n 2
/Tn — /T
IP’< U Ak> = lim ]P’( U Ak) > limsupM :limsupx—n.
k=m+1 "7 N =t oo Yn = Ym n—oo Yn
Letting m — oo completes the proof. O

Second Proof. Let X,, =Y ;_; 14, and Y,, = X,,/EX,,. Then {4, i.0.} = {lim X,, = oo} D {Y¥,, > t i.0.}
for any ¢ € (0, 1), since limEX,, = co. Therefore,

P(A,, i.0.) > lim, oo P(Use,, {Ye > t}) > limsup,,_, o P{Y,, > t},

where P{Y,, >t} > (1 —t)?/EY,? = (1 — t)?(EX,,)?/ EX?2 by the Paley—Zygmund inequality. O

Equality contained in conditional expectation

Let X and Y be integrable random variables.

1.

1.5

If X £V = E[X|¥], then X V.

Proof. First, consider the special case when X and Y are square integrable. Since EX 2=FEY?=EXY,
we have E(X — Y)2 =0 and thus X = Y. For the general case, we will show that

aVXAbZ aVY Ab,

and conclude by letting a N\, —oco and b 7 oo. By Jensen’s inequality, E[a V X |¢] > a VY, where the
equality must hold for Ea VX =Ea VY. Finally, a\/X/\bia\/Y/\b:E[a\/X/\bK?]. O

If E[X|Y] =Y and E[Y|X} = X, then X as y
Proof. Let h : R — R be bounded and strictly increasing, e.g., h = arctan. Since
(X #Y}={(X - Y)(h(X) — h(Y)) > 0},

it suffices to show E (X —Y) (h(X)—h(Y)) = 0. To see this, EYh(X) = E{E[Y|X]h(X)} = E Xh(X). O

Correlation inequality and independent copies

. (Harris-FKG / Chebyshev—Kimball) Let f, g : R” — R be nondecreasing functions, and X = (X1,...,X,)

be a random vector with independent coordinates. Then E f(X)g(X) > Ef(X)Eg(X).

Proof. First, consider the case n = 1. Let X’ be an independent copy of X. Taking the expectation of
(F(X) = f(X) (9(X) —g(X")) =0
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leads to the desired result. Then we perform induction on n. Define fi(x;) = E[f(X)|X; = 1] and
g1(z1) = E[g(X)| X1 = 1], which preserves monotonicity. It follows from the inductive hypothesis that

E[f(X)g(X)|X1] > f1(X1)g1(X1),
where E f1(X1)g1(X1) =2 Ef1(X1) Egi (X1) = Ef (X) Eg(X). O

. (Kac) If EeV=T(X+Y) — EeV=TsX EeV=T" for any s and ¢, then X and Y are independent.

Proof. Let € and 1 be independent random variables such that £ 2 X and n Y. We have
]Ee\/jl(SXthY) — Ee\/leX Ee‘/jty — Eems{ Ee\/jltn — Ee\/jl(85+tn),

and thus (X, Y) (&,7m) by the uniqueness of characteristic functions. O
. If ¢ is a characteristic function, then so are ¢?, |¢|?, and Re ¢.

Proof. Suppose that ¢(t) = EeV~MX for some random variable X. Let X’ be an independent copy
of X. Then ¢(t)? = EeV~1E+X) and |¢(t)]2 = EeV X "X). Let Y = X1;y—1y — X'I{py—g) for
U ~ Bernoulli(1/2) independent of {X, X'}. Then EeV=1" = 1(¢(t) + ¢(—t)) = Re é(t). 0

1.6 Taking advantage of characteristic functions

Given a random variable X, denote Fx (z) = P{X < z} and ¢x(t) = EeV~1"X = Ecos(tX) + /=1 Esin(tX).

1. (Constancy and independence) In each of the following cases, X is almost surely a constant:

(a) |ox|=1; (b) X IL X; (¢) X 1LY and X +Y is a constant.

Proof. By the uniqueness of characteristic functions, it suffices that ¢ x = 1.
(a) For every t € R, note that |¢x (t)|> = [E cos(tX)] + [Esin(tX)]? < Ecos?(tX) 4+ Esin?(tX) = 1 with
equality holding only if cos(tX) 2 ¢, and sin(tX) “= s, for some constants ¢; and s;, which means that

tX € (farccos(er) + 27Z) N ({arcsin(s;), m — arcsin(s;)} + 27Z).
Then let ¢ varies. (b)&(c) can be reduced to (a). O

. (Second moment) $1E[X?; |X| < 1] < 5(1—Repx(t)), vt > 0. It follows that EX? < oo if ¢/ (0) exists.

Proof Note that 1 — cosu > “72 - ’2‘4, so [% (1= cos(tz)) dFx(z flit/t 1_ts 2)t2 2dFx(x) where
1828 > 1 Ast 0, we have 1 — Regx (t) = —1(¢x(t )+¢X(— ) = 26x(0 )>~—% % (0)E2. O

If ¢x(t) =1 — ct? + o(t?) as t — 0 for some constant ¢ € R, then EX = 0 and EX? = 2¢. In particular,
X 22 0if ¢px(t) = 1 + o(t?). As a corollary, $(t) = e~I!I” is not a characteristic function for any a > 2.

Proof. We have ¢y (t) = V—1E XeV~1X and ¢4 (t) = —E X2eV~1"X_ Then put ¢ = 0. O

CEXI" =K, [7, %‘w dt for r € (0,2), where K, is a constant only depending on 7.
(Shepp) If X and Y are i.i.d., then E|X +Y|" > E|X —Y|", with equality holding if and only if X 4_X.

Proof. Let K, = 1/ fix;o 1|;‘C,,f’f1“ du, which can be shown to be F(T:D . Then
1 — cos(zt)
=K, dt
/ Tt

and thus E|X|" = [ |z|"dFx(x) can be evaluated by Fubini’s theorem. Based on such a formula,
Shepp’s inequality follows from the fact that 1 — Re¢3 > 1 — |¢x|?, with equality holding if and only if

#% > 0 if and only if ¢x is real-valued if and only if X 4_X. O

See https://artofproblemsolving.com/wiki/index.php/2021_IMO_Problems/Problem_2 for fun.


https://artofproblemsolving.com/wiki/index.php/2021_IMO_Problems/Problem_2
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1.7 Inversion formula for point masses

1. Let i(t) = [, eVt 4y (z) for p a probability measure on R. Then p{a} = limp_, o0 o= ffT e~ V=Tat () dt.

Proof. Fix a € R. By Fubini’s theorem, 5 ffT e"Volatnt)dt = Iz G fTT eV—1l@—a)t dt)dp(x), where

% TT eV-Illz—a)t g — % fTT cos((z — a)t) dt — L[;—,) and the dominated convergence applies. O

2. fX~P,Y~Q and X LY, then P{X =Y} =Y P{z}Q{z}.

Note that P{z} > 0 for at most countably many z.

Proof. P{X =Y} =El{xoy} = [[ Lumy dP(2) dQ(y) = 32, (P @ Q)({z} x {a}) = 3, P{z}Q{z}. O
3. Let ¢x(t) = EeV~1X, Then P{X =z} = 0 for all z if and only if limp_, o fTT|¢X(t)|2 dt = 0.

Proof. Consider i to be the distribution of X — X', where X’ is an independent copy of X. Combining
the previous results, >, P{X = z}? = P{X — X' = 0} = lim7,c 5 f_TT|¢X(t)\2 dt. O

Therefore, the distribution of X has no point mass if ¢x(t) — 0 as t — oo, which can be derived by
the Riemann—Lebesgue lemma when a probability density function exists. However, the converse is false,

e.g., 2> 77, Xi/3" has the Cantor distribution if Xy, Xo,... Rl Bernoulli(1/2), whose characteristic
function is given by ¢ — [[p2; (1 + e2‘/jlt/3k) and has the same value on {3"7}22 .

2 Stochastic convergence

2.1 Convergence in probability from the perspective of metrics
The Ky Fan metric is defined as a(X,Y) =inf {¢ > 0: P{|X — Y| > ¢} < ¢} for random variables X and Y.
Also, introduce f(X,Y) = E% and v(X,Y) = Emin{|X — Y|, 1}.

1. (Triangle inequality) a(X,Z) < a(X,Y) + (Y, Z).
Proof. P{|X — Z| > e1 + &2} <P{{X — Y| > &, } + P{|Y — Z| > &5}. O

One can check that «,3,7 are metrics indeed.
2. (Equivalence) a?/(1+ a) < 8 < 2a/(1 + ) and (trivially) 8 < v < 28.

e e—a, o2

Proof. Write a = a(X,Y), 8= B(X,Y), and T'= |[X —Y|. On one hand, 8 > {T_P{T > e} —— .

1 o0 a 00 a
On the other hand, § = [y P{y{7 >u}du= [FP{T >t} 58w < [l + /o omhyr = 1 U

3. XnﬂX = Y(Xp,X) 20 = (X, X) 20 = a(X,,X)—0.
Proof. | X, — X| 50 < min{|X, — X|, 1} 5 0 <= Emin{|X, — X|, 1} — 0. m

4. (Uniqueness) If X, B X and X, P, Y, then X %Y.
m,n—00

5. If {X,,} is Cauchy in that P{|X,, — X,,| > e} ——— 0 (Ve > 0), then X,, converges in probability.

Proof. Now that (X, X,) —2=25 0, we choose {n;} such that SUP s, P X — X | > 277} <279,
Then A; = {|X,,,,, — Xn,| > 277} satisfy that )" P(A;) < 3277 < o0, so the first Borel-Cantelli lemma
implies that A = {A; i.0.} occurs with probability zero. Next we restrict ourselves to A, on which
limy o0 Z;ik|an+1 — X, | <limy oo Z?‘;k 279 = 0 and thus limg_, o0 X, = X, +Z;‘;1(an+1 —Xn;)
exists and is finite. Finally, it must hold that X,, converges to X = limsup,_,., X, in probability, as
{IXn = X| >e} C{|Xn — Xp, | > &/2} U{| Xn, — X]| >e/2}. O
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2.2 Convergence of random series — Lévy’s equivalence theorem
Let S,, = Z?:l X; where X;’s are independent random variables.

1. (Ottaviani-Skorokhod) It holds for A > 0 and p > 0 that

- i - <ul < — .
IP’{ mrilggnlsj Sm|> A+ u} mrgégnP{ISn Skl < pt SP{Sh — Sm| > A}

Proof. Note that {|S,—Sm| > A} D Uj_pyt ({Inf{j > m :|S;—=Sm| > A} = k}n{|Sn—Sk| < p}). O
2. (Etemadi) P{maxm<j§n|5j — S| > 3)\} <2P{|S,, — S| > A} + maxy,<p<n P{|Sk — Sim| > A}, VA > 0.

Proof. From E, P{maxm<j§n|5j — S| > 3>\} —P{|S;, — S| > A} < maxmcp<n P{|Sn — Sk| > 2A}, but
P{|Sn — Sk| > 22} < P{|S,, — Sim| > A} + P{|Sk — S| > A} O

3. If S, converges in probability, then S,, converges almost surely.

m,n— oo m,n— oo

Proof. 1t follows from P{|S,, — Sy,| > A} ——— 0 that P{max,,<;j<,|S; — Sm| > 3A} ——— 0 by
Etemadi’s inequality. Then

m—r o0

]P’{sup$k>m|5j — Skl > 6A} =5 0.

However, sup; j~,,|S; — Sk| decreases with m and thus admits a pointwise limit Z. The uniqueness of

the limit in probability forces that Z “= 0, whence {8,152, is a Cauchy sequence and converges. O
4. If S,, converges in distribution, then S, converges in probability.

Proof. Since any Cauchy sequence in probability is convergent in probability, it suffices that Y; = S,,, =S,

converges to zero in probability, or equivalently Y; 20, for all sequences {n;} and {m;} with n; > m;.
For |t| small enough,
Ee\/fltsmj ]Eex/fltY' — ]Ee\/jltsnj

where lim;_,, Ee" —LtSm; lim;_ o Ee" ~1t9; is nonzero. Hence, EeV~1"Y5 — 1 for ¢ in a neighborhood
of 0. We then conclude by Lévy’s continuity theorem. O

2.3 Series of nonnegative random variables

Let S,, = Z?:l X; where X; > 0 are independent. Then S,, " Seo.

1. Kolmogorov’s zero—one law ensures that {>_ | X,, < oo} is P-trivial. The following are equivalent:
(a) X0 Xy <ocas; (b)) X0, (P{X, >1}+E[X,;; X, <1]) <oo;  (c) ooy Elfifcn < 0.

Proof. By Kolmogorov’s three-series theorem, (a) <= Y | [P{X, > 1} +EY, + Var(Y,)] < co, where
Y, = Xnl{x,<1}- Since Var(Y,) < EY;? and V,? <Y}, we obtain that (a) <= (b). As for (b) <= (c),

note that 1 (P{X, > 1} + E[X,; X,y < 1]) < E2%— < P{X,, > 1} + E[X; X,, < 1]. 0

2. (Chi-squares) Suppose v X,, ~ N (pn,02). In other words, X,, = (yn + 0, Z,)? where Z,, ~ N(0,1).
(a) If S, converges in L', then > 7 (u2 + 02) < oo.
Proof. ESoe = > 07 (12 + 02). O
(b) I >°0° (42 4+ 02) < oo, then S,, converges in LP for any p € [1,00).
Proof. S Xallze < X (12 + 2un0nl|Zull e + 02122 20) where 2pinon < 2 + 2. 0

a.s

3. A useful fact is that So, = 00 <= 0 =FEe 5= = H;:O:l Ee X». Also, So < 00 a.s. if ES,, < oo.
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(a) Suppose v/X,, ~ N(0,02). Then Sy, = 00 <= > o0 02 = c0.
Proof. [[Ee=X» = [[Ee "% = [[(1 + 202)~/2 where [[(1 +202) > 1423 02. O

a.s

(b) Suppose X,, is exponentially distributed with rate \,. Then So = oo <= Y o7, ﬁ = oo0.

Proof. 1/TIEe ™ =1/T 5247 =10+ ) =1+ X 5. O

2.4 Converse of strong law of large numbers
Let X, Xy, Xo,... beiid., S, =>",X,, and p> 0.

L EIX] < 00 <= lm[X,[?/n "5 0 <= X,/nl/? 220,

Proof. For any £ > 0, we have E|X|P/e < 00 <= Y P{|X|P > ne} < o0 <= P{|X,|P > ne i.0.} =0
and {limsup | X, |P/n > e} C {|X,|? > ne i.0.} C {limsup|X,|P/n > e}. O

2. If S, /n'/? 225 0 and p > 1, then E|X|P < co and EX = 0.

Proof. Note that X, /n'/? = S, /n'/P — (1 —1/n)"/?S,_1/(n—1)"/? 22,0 -0 =0, so E|X|? < co. Since
E|X| < oo, Kolmogorov’s SLLN gives S,,/n =23 EX. Also, S, /n = n'/P~1S, /nl/P 225 0, O

2.5 Asymptotic behavior of Gaussian maxima

Let Z,Z1,Z,... M N(0,1), whose probability density function is ¢(z) = X/%e_zz/z. Let M,, = maxi<;<n, Z;.

Since P{M,, < 2z} =P{Z < z}" and (1 — 1) e let e_(z) =e™® and b, = inf{b: P{Z > b} < 1} 700
1. (Mills ratio) 1/z —1/23 < z/(2®2 + 1) <P{Z > 2z} /p(2) < 1/z for 2 > 0.

Proof. %e’z2/2 - e /2qy = = %6*7‘2/2 du< % [ e~ /2 du. O
2. lim, oo P{Z >2+0/2}/P{Z > 2} =e_(0), V0 € R.
Proof. Since P{Z > z} ~ L¢(2) as 2 — oo, we have P{Z > 242} /P{Z > 2} ~ o(2+%)/p(2) ~ e_(0). O
3. (Extreme value distribution) Let a,, = 1/b,, = 0o(1). Then P{(M,, — b,,)/an < 2} — e_(e_(x)) for z € R.
Proof. P{(M, —by)/an <2} = (1 -P{Z > a,z + bn})n where P{Z > a,z + by} ~ Le_(x) using E O
Recall the Fisher—Tippett—Gnedenko theorem!.
4. b, ~+/2logn and thus M,,/\/2logn LA

Proof. For n large enough, P{Z > v/2logn — 2logv,} ~ \A;”fiogn -Lif 1 < v, = O(logn). By choosing v,
appropriately,

\/210gn —2loglogn < b, < \/210gn — loglogn.
Then M,, — 2logn = M,, — b, + b, — v/2logn = Op(a,,) + o(v/2logn) = op(v/2logn). O

5. EM,,/+/2logn — 1.

Proof. Jensen’s inequality gives e/®M» < Ee!Mn» for t € Ry. But eM» <37  e!Zi leading to
EetMn < nEet? = netz/Q.

Thus, EM,, < 1 log(net*/2) = logn 4 £ We obtain EM,, < /2logn by optimizing the upper bound over ¢.
As for the lower bound, 0 < EM,; < EZ~ = O(1), and EM,f /\/2logn = [ P{M,/v/2logn > u}du
has liminf > [° liminf P{M,,//2logn > u} du by Fatou’s lemma, where P{M,, /v/2logn > u} — 1,
for almost all u. This shows that lim inf EM,,/v/2logn = liminf EM," /\/2logn > 1. O


https://handwiki.org/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem
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2.6 Law of iterated logarithm
Let X = (X;):er, be a stochastic process with continuous sample paths. Denote h; = v/2tloglogt.

1. (Upper bound derived by sub-Gaussianity) If there exist 0 < v; = O(t) such that P{X;} > A} < e=*"/(2v)
for A > 0, then limsup,_, . X;/h: <1 a.s., where X} = Sup,<; X is the running maximum.

Proof. For any t > e° and ¢ > 1, we have P{X; > ch,} < e~ (t/v)loglogt < (1554)=¢"  Choosing t, = ¢"
for some g > 1, it follows that
2
P{X% > chg} Sn=.

Since z:rfc2 < 00, we obtain that P{X7. > chgn i.0.} = 0 by the Borel-Cantelli lemma. This implies
that limsup,, ., Xy /hen < c a.s.. Note that

X[ /he < Xpn[hgn-1 = (Xju /hgn)(hgn [hgn—1), t € [¢" 71, q"].
Thus, limsup,_, ., X;/h < ¢\/q a.s.. Letting ¢ \, 1 and ¢ ;1 completes the proof. O

2. (Lower bound) If limsup,_, ., (—X¢)/h: < 1 a.s. and limsup,_, (Xt — Xy/4)/he > /(¢ —1)/q a.s. for any
g > 1, then limsup,_, ., X;/ht > 1 a.s..

Proof. (a.s.) limsup, . (=X;/q)/ht <lmy o0 hysq/he = 1/4/q, so limsup, ,  X;/hy > (/g —1-1)/./q,
where (vg—1-1)/\/q = 1as g — co. O

3 DMartingales

See https://zhuanlan.zhihu.com/p/76804737 for a fast-paced review, whose
pdf version is available; see comments therein.

3.1 Switch at a stopping time

1. Let X = (Xy)i>0 and Y = (Y});>0 be supermartingales with respect to a filtration (%;);>0. Suppose 7 is
a stopping time such that X; < Y.. Define Z; = Xyl ;< + Vilrogy and Wy = Xylropy + Villrsgy-
Then Z = (Z;)1>0 and W = (W;);>0 are also an (.%;);>o-supermartingales.

Proof. Write A~ X; = X; — X;_ and ATX; = X;;, — X;. It can be seen that

)

A™Zy = A Xyl ey + ATVl frog + (X7 = Vo)l

A+Wt - A—i_A)(tIL{TSt} + A_‘—Ytﬂ{-r>t} + (XT — YT)IL{T:t}
EA~Z|F-| = E[A_Xt|ﬁt7]]]-{‘r<t} + ]E[A_Yi|yt7}]l{7'2t} +E[(X; - YT)]]-{T:t}|§t7] < 0
E[ATW,|.F] = E[A“‘Xt\gzt]]l{,rgt} + IE[A“‘YA%}]]I{TN} + E[(X7 = Y:)1—n|F] <

2. (Dubins) Let X = (X;)¢>0 be a positive supermartingale with respect to a filtration (.%;);>¢. Denote
by U®? the number of upcrossings through [a, b made by ¢ ~ X;. Then P{U%"* > k} < (a/b)*Emin{Xy/a, 1}.

Proof. Let 79 = 0 and 73 m{ z7-1: X S o
;= inf{t >0o; : X; > b}

Ztg]) = Wt(]._l)]]'{t<0']'} + (b/a)jil(Xt/a)]]‘{tZUj}

Wt(j) = Zt(j)IL{tST].} + (0/a) Lipsrpy

with respect to .#; = (X, : s < t). In order to bound P{U%" > k} = P{r; < oo} = limy_,oo P{7s, < t},

note that (b/a)FP{r, <t} < EWt(k) < EWék) = EWO(O)' -

for j = 1,2,---. Define W(©® = min{X/a, 1} and

recursively { so that by m they are supermartingales


https://zhuanlan.zhihu.com/p/76804737

Probability Exercises

3. (Random walk) Let S,, = >""" | &; with &;’s taking values in {£1}. For any s = (s,)n>0, define 75 (s) =
inf{n : s, = k} and Ok (s) = (spLpn<r,(s) + (2k — sn)]l[n>7k(s)])n>0. If S satisfies the reflection principle

that ©(S) L8 for k = 0,1,2,---, then S is a symmetric simple random walk.
Proof. Tt suffices that So., = (So,S1,...,Sn) is uniformly distributed on A™ = {sp., = (S0, 81,.--,8n) :

s0 =0, s; —s;—1 = *1 (Vi)}. Let s be a possible path with sg.,, as its first (n + 1) elements. There exist
ki < --- < ky, such that ©(5) = Oy, o---00y, transforms s to have (0,1,--- ,n) as its first (n+1) elements.

Then 6(8)(5) < S, so P{So.n, = soin} = P{@(s)(S)O:n = @(s)(S)O:n} =P{So:n = (0,1,--- ,n)}. O]

4. (Converse of optional stopping theorem) Let M = (M,;);>o be an integrable stochastic process adapted
to a filtration (#;);>0. Then M is a martingale if EM, = EM) for every bounded stopping time 7.

Proof. Let s <t. If A € %, then 7 = sl 4 + t1 4¢ is a stopping time. Thus,
0=EM; — EM, = E[M; — M; A].

Since A is arbitrary, we conclude that E[M|.%s] = M. O

3.2 Optimal stopping with finite horizon

Let Y = (Yn)n=01,.., ;v be an integrable stochastic process adapted to a filtration (%#,)n=0,1,...,v. Then the
Snell envelope U = (Up,)n=01,... .~ is recursively defined by Uy = Yy and U,, = Y, V E[Uj,41].%,] for n < N.
Denote by Sfé the set of stopping times 7 with tg < 7 < 1.

1. U is a supermartingale and U,, < X,, for all n if X is a supermartingale such that X, >Y,, for all n.
Proof. First, Xy > Yy =Upn. If X;,11 > Uy, then X, > E[X,,11|-%,] > E[Uy41]%0], 80 X, > U,. O

2. (Value function) sup,csn E[Y:[#,] = U,, = E[Y, | #,], where 7, = inf{t > n : Y; = U;}. Consequently,
(Bellman equation) sup,csy E[Y:[#,] =Y, V IE[supTeSN+1 ElY;|Zni1] | Fn] for n < N.

Proof. The statement is trivial for n = N. We proceed backwards inductively. If 7 € SN ,  then
7Vne€SY and thus E[Y,y,|%,] < U,. For Y, = Yo 1lir—n—1}y + Yrunl{z>n), we have

E[YT|}\”_1] - Yn—lll{rzn—l} + E[YT\/n|yn—1]]l{72n} S Un—ll{rzn—l} + E[Un|j\n—1]]l{7—2n} S Un—l;

with equality holding when 7 = 7,1, since Y, |, =Up_11y7,_—p_1} + Y7, 1{7, 50} 0

Particularly, EY, = E{E[Y;| %]} < EUy = EY;, for any 7 € SY', and thus 7y = arg max,csy EYr.
Besides, the stopped supermartingale U™ = (Upargy )n=0,1,.-- N is actually a martingale, since U,, = Y-,.

3. (Cayley—Moser) Suppose that ¥,,’s are i.i.d. copies of Y and #,, = 0(Yp,Y1,...,Y,). Then E[U,+1|Z,] =
An_, is a constant that depends only on N — n. Moreover,

(a) A, =log(n+ O(logn)) if Y ~ Exponential(1).
(b) A, =1-2/[n+1log(n)+ O(1)] if Y ~ Uniform(0,1).

Proof. Put Ag = —oo. By induction, E[U,|%,-1] = E[YoVAN—n|Fn-1] = E[YVAN_,]sinceY,, 1L Z, 1.
This also leads to the recursion formula 4,11 = E[Y V A,], starting from 4; = EY.

(a) Now A, 1 = A, +e 4. Write A,, = log(n + x,,), then

1 = e_An = An+1 — An = log(l + 71+In+lixn).

n+x, n+y,
Using H»Lu <log(1 + u) < u, we obtain that 0 < 2,11 — z, < #ﬂfl < %
(b) Now A, 11 = (A2+1)/2. Write A4,, = 1—-2/(n+x,), then some calculation gives z,, 41—z, = #ﬂ,

so x, <log(n)+ O(1). It follows that x,, —log(n) — O(1) > Zzzl(ﬁogk —Ly> oy, Iokgzk. .
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3.3 Martingales derived from differentiation

Let M(6) = (Mt(e))m be a martingale with respect to a filtration (.%#;);>0, for any 6 in a neighborhood of 0.
If Mt(n)(Q) = 97 M,(0) exists and ]Esupg\Mt(n) (0)| < oo for all t, then (Mt(n)(O))tZO is a martingale.

Mt(9)| ] - aen

E.g., the exponential martingale of a Brownian motion is associated with Hermite polynomials.

89”

Proof. For s < t, we have IE[

I oE[M(0) | F5] by the dominated convergence. O

3.4 Strong law of large numbers
Let X, Xy, Xo,... beiid.and S, =31 | X;.
1. (Convergence rate) If EX? < oo, then (S, — nEX)/a, == 0 for a,, = n'/?(logn)'/?T¢ with ¢ > 0.

Proof. Let M,, =" ,(X; —EX)/a;, which is an L>-martingale adapted to %, = o(Xi,...,X,). Using
the fact that sup EM?2 = Var(X)sup Y., 1/a? < oo, we obtain the a.s. convergence of M,,. The proof is
completed by applying Kronecker’s lemma. O

2. (Moment convergence) If E|X|P < oo for some p € [1,00), then X, L EX where X, = Sp/n.

Proof. Let F_,, = 0(Xn, Xni1, Xny2,...), then X, = E[X;].7_,] 2%, EX. By Vitali’s convergence
theorem, it suffices that {|X,,|’},>1 is uniformly integrable, but | X, [P < E[|X1|P|%_,]. O

4 Markov chains

Suppose throughout this section that X = (Xo, X1, Xs,...) is a homogeneous Markov chain with transition
probabilities P(X,, = y | Xg = z) = p"(z,y) for states z,y. Denote P, =P(-| Xy =2z) and E, = E[- | X, = z].
4.1 First passage decomposition
Let T, = inf{n > 1: X,, =z} and f"(z,y) =P, {T, = n}.
L p™(z,y) = >0, f™(z,y) p" " (y,y) for n > 1. In other words,
Pry(s) = Lip—y) + Fry(s)Pyy(s), where Py (s) = 220:0 p™(z,y)s" and Fyy(s) = ZZO:O f(x,y)s™
Proof. {Xy =y} =Up_i{Ty =m, Xn =y} and Po(X, = - [T, =m) = p" " (y, ). O
2. P{T, < <} =1-1/G(x,z) where G(z,z) = Y .~ p"(z,x). Hence, T, < oo Pg-as. <= G(z,z) = oc.

Proof. Let s /' 1in Fpp(s) =1 —1/Pg.(s). O

3. 2N p(@,x) > SN pr (2, a), VR > 1

Proof. Let T = inf{n >k : X,, = z}, then p"(z,z) = YI" _, Po{T = m}p" "™ (x, ) for n > k. It follows
that T0¢p"(@0) = Sl S PedT = mip" (@, %) = SAERAT = m) ke, 0),
where SNVHR pn-m (g gy < En oP"(z,x) and ZN+kIP’ {I'=m} <1 O

’I’me

4.2 Number of visits

Let Vo(z) = >0 Iix,, =) and T = inf{n > TV x, = x}, where T =T, = inf{n > 0: X, = z}.
Clearly V,(z) = > o, Lo gy Assume that X is irreducible and recurrent, so P,{T}, < oo} =1, Vz,y.

P {Ty<Ts
L. E.Vr,(y) = 7%%12%% for x # y.

Proof. B,V (y) = Ypy PoATy" < Tu} = Y00 PoAT, < T} [12) Po(Ty Y < T | Ty < T) where
P, (T(]+1 < Ty |T(]) <T,) =P,{T, < T,} due to the strong Markov property. O
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2. ]EIVTI (y) EyVTy (Z) = ExVTI (Z)

Proof. Since the stationary distribution is unique up to constant multiples, E,Vr, (+) oc E, V7, (+). O
Vn(7) P-a.s. 1 _ Ex Vi m(y) n _ Vi (y) P-a.s. E. V5 z(y) _ E. T, _
Vi) E V() = Eva (s 20d thus g5 =37, 9255 2y EVats) = BV = Bl
(k) (k+1) k k41 Vi (y) k .
Proof. If Ty < n < Ty then = VT§k+1>(2) < Vn(z) < VT,gk>(Z>' To conclude, it suffices that
Voo () as. \
¢ =+ [V, (2)+ Z ( T(7+1>( 2) =V, (2))] = E,Vr, (2) by the strong law of large numbers. [
Ey Vi (y) RN 1 _ E.Vr, (y)
© EeVi(z2) ]EyVTy () — ]EanVTm ()"

Proof. Let Lé") =max{m < n: X, =y}, <n). Then the last exit decomposition gives

E.Vo(2) = Z:anl PAXm =2} = ZZTZI " (x, 2)
= 22:1 Po{Xm =2 T, >m} + Z:zzl Z;nﬂ P{Xm = 2, Lém) =(}
= ZZI:I p@(x7 Z) + Z;:l an:Z pe(x7 y)pq;*f(% 2)7

where p{’;(x,z) =P, {X:, = 2, T, > m}. Since E;V,(y) /S coand > ~_, p’@(:c,z) =E,Vr,(2) — 1jy—y,

we obtain that == X’L(y = > ép\y Yy, z) = Tiy—z + E,Vr, (2) — 1jy—.) = E, V1, (2). O

4.3 Superharmonicity and recurrence

A function f is said to be superharmonic if f(z) > Zy pl(x,y)f(y) for all 2, and to be harmonic if there are
only equalities. Suppose that X is irreducible.

1. . — P,{T4 < oo} is superharmonic, where T4 = inf{n > 1: X,, € A} for A a subset of the state space.

Proof. By the one-step forward analysis, P, {Ta < 0o} = 37, c 4 p'(2,y)+ 2,04 p' (2,y) Py{Ta < 00}. O
. X is recurrent if and only if every bounded superharmonic function is constant.

Proof. Let f be a bounded superharmonic function so that Y,, = f(X,) is a bounded supermartingale
converging a.s. to some Y. If X is recurrent, then for any z we have a.s. X,, = x i.0., and thus Y, = f(z),
which forces f to be constant. Conversely, if X is transient, then take f(z) = G(z,2) = > . p" (2, 2)
for a fixed z. We have Zy pH(x,y)f(y) = flx) — Tjp=2], SO f is a nonconstant superharmonic functlon
Note that f < G(z,2) < co. As an alternative, one may con51der f(x) =P {T(.; < oo} fora fixed z. O

. (birth-and-death) Let the state space be N, and p!(z,y) = b, Liy—zq1] + daljy—p—1) Where b, +d, =1

and dy = 0. Then X is recurrent if and only if >~ 7 TT" Iy = oo,

y=1 b,

Proof. Let h(z) = P,{Tjoy < oo}. We have h(0) = h(1) = byh(2) +dy and h(z) = byh(z+1)+d.h(z—1)
for > 1, which can be written as h(xz) — h(z + 1) = (h(z - 1) h(z)). Then it’s easily seen that
1—h(z) =(1—h(1))g(z), where g(0) =1 and g(z) = Z:Zé y=1 by for x > 1. If g(o0) = oo, then the
boundedness of h entails that h(1) = 1, in which case X is recurrent. Conversely, if g(co) < oo, then the
superharmonic function g(co) — ¢ is not constant, so X is transient. O

Second Proof. Note that §(X,7) is a martingale, where § = g 1;pyc and 7 = inf{n : X,, € {0, M}} for

some M € N. One can apply the optional stopping theorem to obtain that P, {Tyoy > Tiary} = g(x)/g(M)
if 0 <@ < M. Letting M — oo gives P,{To} = oo} = g(x)/g(c0). O

10
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4.4 Green’s function — potential theory

Suppose that X is irreducible. Let G a(z,y) = E, ZEA_I I¢x,—y}, where A is a subset of the state space S, and

n=0

ea = inf{n : X, ¢ A}. In particular, Gs(z,y) = G(z,y) = Y07, p"(x,y). Write Pf = 3= p'(-,y)f(y) for a
function f on S which is either bounded or nonnegative. Note that P"f =3 p"(-,y)f(y) = (z = Ep f(X2)).

1. Assume that X is recurrent and 0 < #A < #8S.

(a)

Ga(z,y) < oo, Vz,y € S.

Proof. Note that G4(x,y) = 0if z € A® or (z,y) € Ax AL. For 2,y € A, we have G4(z,y) < Egea.
Since Py{ea > n,} < 1 for some n, € N by the recurrence, we have

Plea >na|Xo € A) <maxgea Po{ea > nat <maxgeaPr{ea >nyt=a<1

for ng = max;ca ng, and thus P.{es > knu} = H§:1 P.(ea > jnalea > (j—1)na) < a for every
k € N, which implies that E,eq <na Y. a® < oco. O

(1=P)Ga(+,y) =1,y on A, for any y € A.
Proof. For any x € A, we have
GA(xvy) - ]l{y}(x) = ZzeA E, Z;A:_ll ]]-{Xlzz,Xn:y} = ZzeApl(za Z)GA(Z,y)

by the strong Markov property, but G 4(z,y) =0 for z ¢ A. O

(1-P)p=pon A
¥ =0 on AL
by > ca Gals,y)o(y), as Ga is the fundamental solution suggested by @

For any function g on A, the Poisson equation has a unique solution 1 given

Proof. Tt remains to show the uniqueness. If 1 is a solution to the Poisson equation, then for any
rEA,

Yyea Gal@,y)o) =3, ca Galz,y) (V(y) = X cap' (Y, 2)0(2))
= ZzeA 1/)(2) ZyeA GA($7 y)(]l[y=z] - pl(ya Z))
= ZzGA w(z)l[z:z] = ¢($),

since GA(IVZ) - ]l[w:z] = ZyeAEac Z;A:_ll ]l{Xn,lzy,Xn:z} = ZyEA GA(Iay)pl(yaZ)' O

2. Assume here that X is transient, whence G(z,y) < oo, V,y € S.

(a)

(b)

P"G(-,y)(z) = 0 as n — o0, Y,y € S.
Proof. Proceeding the same way as in @, we have (1 —P)G(-,y) = 1y, so
P"G(-,y)(x) — P G(,y)(x) = P Ly (2) = Ep Ly (Xn) = p" (2, ).
Therefore, P"G(-,y)(x) = G(z,y) =312y (P*G(, ) () =P*1G (-, y)(2)) = 332, pM(w,y) = 0. O

(Riesz) Let f: S — R4 be superharmonic in that f > Pf. Then h = lim,,_, ., P"f exists pointwise
and is harmonic, and f(z) = h(z) + 3_, G(z,y) q(y) for all z, where ¢ = f — P f represents charges.

Proof. The sequence f > Pf > P2f > ... >P"f > ... >0 admits a P-invariant limit. Next, notice
that f—P"f =Y 120 PPg =302 3, 0" (v a(y) /3, G () a(y). m

11
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5 Stationary sequences

Recall that a measurable transformation T on a measure space (S,.7, ) is said to preserve u if poT ! = p, and
to be ergodic for y if all T-invariant sets are p-trivial, i.e., u(1)u(I%) = 0 for any I € .% such that T-(I) = I.
A sequence & = (£o,&1,&2,...) of random variables is said to be stationary if 6 preserves P o ¢!, and to be
ergodic if 0 is ergodic for Po =1, where 0 : (xg,21,...) + (x1,T2,...) is the shift operator. We are primarily
interested in the case &, = X 0 ¢°" for some transformation ¢ on (2, %, P) that is P-preserving and P-ergodic.

5.1 Invariant sets and functions

Let T be a transformation on (.9,.7, 1) which is measure-preserving. Suppose that p is complete.

1. (c-algebras) S5 ={A €. : u(T1(A)AA) = 0} is the completion of S ={I € . : T~1(I) = I}.

Proof. On one hand, for A € #} we have C' = {T~"(A) i.0.} € . such that u(AAC) = 0. To see this, let
B =2, T "(A). Then u(AAB) < S50, p(AMT " (A)) < 372°, S (T~ D (A)AT () — 0,

n=0
and p(BAC) = 300 (T~ =Y(B)\ T~"(B)) = oo - u(B\ T~Y(B)), where B\ T~}(B) C A\ T~!(A)
has measure zero. On the other hand, if J € % satisfies that u(JAI) = 0 for some I € Fp, then
(T (J)AT) < (T (J)AT (1)) + p(IAT) = 0. 0

2. f:S8 — Ris Fh-measurable if and only if f o T =" f, and is #r-measurable if and only if f o T = f.

Proof. Denote I, = f~1((a,b]) = {a < f < b}. Clearly T"'(I,p) = {a < foT < b}. Note that
{foT # f}=U,co ({foT <r < fYU{f<r<foT}). Also, f, =27"[2"f| converges to f pointwise

as n — 00, of which invariance can carry over to the limit. O
5.2 Criteria for ergodicity
Let £ = (&1,&2,...) be a stationary sequence.
1. Let n = (n1,7m2,...) where ng = g(&k, Exr1, - .. ) = go8°F=1D(€) for some measurable function g : R® — R.

Then 7 is also stationary. Moreover, if £ is ergodic, then so is 7.

Proof. Tntroduce G = (g o §°*=1);_; 5 ., which satisfies that G 0§ = 6 o G. We have ¢ < 0(&), so

n=G(&) LGo 0(¢) = 0(n). For any J € P such that §71(J) = J, called f-invariant, I = G=1(J) is
also f-invariant, and thus P{n € J} = P{{ € I'} should be either 0 or 1 as long as £ is ergodic. O

2. & is ergodic if and only if 2 37" | 15(&,. .., &ivno1) -:—+ P{(&,...,&) € B}, VB € B, Vk=1,2,---.

v-a.s.

Proof. Denote v = Po&~!. The stated property translates into £ 7 | 1 gy pe 06°0~1) 222 (B x R™).
In conjunction with Birkhoff’s ergodic theorem, this yields E¥[1pxgre|-#] = E¥1pxRr~, indicating that
B x R*° is independent of .#y under v. The “only if” part is now trivial. As for the “if” part, notice that
Iy Loo(Upei{B xR™ : B € BE}) = B D Iy. O

6 Brownian motion

6.1 Chaining and continuous modification of stochastic process
1. (Talagrand) Let X = (X;):er where T is a countable set equipped with a metric p such that
P{|X; — Xs| > e} < f(e,A), Ve>0, Vt,s €T :p(t,s) <A.
For any increasing sequence {1}, of subsets of T' with (T}, =T, if To = {to}, then

— < : <
p{ up |, — Xiy| > e} <> 4T, max #{t € T, - plt,5) < Au} flen, An), Ven >0,

n>1 n>1

where A, = 2sup,cq p(t, Th—1).

12
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Proof. Define m,(t) = argmin,.r p(t,s), which = ¢ for sufficiently large n. Using the relation that
X:— Xy, = Zn21(Xwn(t) — Xr._1(t)), we have

{§2$|Xt — X, | > an} c U UlXn — Xe ol >t ¢ U U {1X; — Xo| > en),

n>1 teT n>1 n>1t,s€Ty,:p(t,s) <A,
where Ay, > p(t,T,,) + p(t, Tr—1) = p(t, mp(t)) + p(t, mn—1(t)) > p(mn(t), mn—1(¢)). O
. (Kolmogorov—Chentsov) Assume that X = (X;);c[o,1¢ admits some constants a,b, K € (0, 00) for which

E|X; — X,|* < K|t — |4, vt,s €[0,1]%

oo

It’s immediate for m that f(e,A) = KAt /2% applies when p(t, s) = ||t — 5| «, by Markov’s inequality.
Let ¢ € (0,b/a). Denote the dyadic lattice by D = |J D,, where D,, = {k/2" : k =0,1,--- ,2" — 1}<.

(a) The path t € D — X, is Holder continuous of order ¢, with probability one.

Proof. Note that if ¢,r € D : ||g — 7||oc < 2'7™, then there exist qo,70 € Dy, @ ||g0 — 70llcc < 27™,
q € D(go,m) =qo+2"™D, r € D(rg,m) =19+ 2 ™D. Hence, with L =1+ 2/(2° — 1),

U {[Xqg = Xo| > Llg—rllsc} = Anm
q,r€D:
la—rlloo<2=M

c Y U {1X, — X,| >L-27°"}

m>M q,reD:
27M<g—rlloo <217

{1 Xg = Xgo| > 277 /(2° = 1)}

- U U U U U{|Xq0 - XT0| > 2_Cm}
m>M  qo,70€Dm: q€D(qo,m)reD(rg,m) U{‘Xro — XT| > 2—cm/(2c — 1)}

llao—7rollcc <27
{1 Xg, — X | > 27}

= U U U{SuquD(qo,m)‘X(I - qu| >27em anl 27} )
m>M  qo,70EDm: U{supTeD(To)m) ‘X»,‘ — XTOl > 9Q—¢cm ZnZl 2—cn}

llao=7rollcc <27™

whose probability is bounded by

Z 2dm . 3d X (f(2fcrn7 27m) +2 Z an . gd . f(27cmfcn7 9. 27m7(n71))>

m>M n>1

_ 3dK Z 2(ac—b)m (1 + 9d21+2(d+b) Z 2(ac—b)n) < 2(ac—b)M.
m>M n>1

Now S1P(Ay) < 00, so P(Ays i.0.) = 0 by the Borel-Cantelli lemma. For w € {Ay; i.0.}8 = [J A,
let
M, (w) = inf{M : w e A%,}.

Vt,s € D can be connected by s = 5o <+ 81 < -+ <+ 8, = t with [|8; — 8i_1]|oc < 27 @) ||t — 5]|0e
and n < N(w) = 14 2M-@)_ Tt follows that | X;(w) — Xs(w)| < N(w) - L - 27M=@)|jt — s]|<.. O

(b) A continuous process X = (Xt)te[o’l]d agreeing with X on D a.s. is a modification of X.
Note that the Hélder continuity of X on D extends with the same order to the entire cube [0, 1]¢.

a.s.

Proof. For any t € [0,1]%, choose a sequence {t,} C D with t,, — t. Then X, = X, . Since

th - X, by continuity and X, RGN X, the uniqueness of limits in probability entails X, =X, O
(¢) The Brownian path is Holder continuous of any order < 1/2, with probability one.

Proof. If Z ~ N(0,t), then E Z2¢ = (2k — 1)!! - t* for every positive integer k. O
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6.2 Nonsmoothness of sample path

Let B = (B;)i>0 be a standard Brownian motion.

1. The path t — By is nowhere Holder continuous of any order > 1/2, with probability one.

Proof. (Dvoretsky—Erdés-Kakutani) Fixing o > 1/2 and C > 0, it suffices to show that the event
Ap = Usepo,1) Nicji—s|<myn {1 Br — Bs| < Ct — s|*} has probability zero for n > 1, where m > 1/(a—1/2).
On A,, we have maxy<j<iim|Bj/m — Bj—1)/m| < 2Cm®/n® for some 0 < k < n —m. To conclude, note
that A, 1 and that (n —m + 1) P{|IN(0,1/n)] < M/n*}"™ < n - (%nlm_o‘)m Spl-le=1/2m o 0O

2. (Paley-Wiener-Zygmund) The path ¢ — B, is nowhere differentiable, with probability one.

6.3 Reflection principle and arcsine law

Let B = (Bt)i>0 be a standard Brownian motion, starting from « under P,,. Denote M; = max,<; Bs.
1. BL92BT _ B for any stopping time T', where BT = (Biar)i>0-

Proof. By conditioning, assume T < co. Then by the strong Markov property, B(T) = (Br4t — Br)i>o0
is a standard Brownian motion starting from 0 and B™) 1 (BT, T), so (BT, T, B() 4 (BT, T,—-BM).

Therefore, B = BT + B{",, £ BT — B{") ., =2BT - B. O

)
2. M; 4 | B;| for any ¢t > 0, under Py.

Proof. Using the reflection principle with T, = inf{¢ : B; = a}, we have {M; > a} = {T, <t} and hence
Po{M; > a, By <b} = Pop{2a — B; < b} =Po{N(0,t) > 2a — b}, where a > bV 0.

Thus, Po{M; € da, B, < b} = \/%e_@“‘by/(%)]l[azbvo]. Letting b < a completes the proof. O

3. Recall that arcsin(\/giriz) ~ Uniform(—7%, §) for &, 7 Ld N(0,1).
n

(a) L =sup{t <1:B; =0} satisfies that Po{L < t} = 2 arcsin/t for ¢ € [0, 1].
Proof. Po{L <t} = Po{max,cp; 1) Bs < 0} + Po{mingep 1) Bs > 0}
= Po{max,cp1)(Bs — Bt) < =B} + Po{—mingcp 1)(Bs — By) < By}
_ P{VT=I€] < —vEn} + B{VT=F[e| < vin}
=P{VI—t[¢] < Vilnl}
2
= P{eiﬁ < t} 2 arcsin v/t. O

(b) 7 =inf{t: B, = M} satisfies that Po{7 < t} = 2 arcsin /¢ for t € [0, 1].
Proof. We have (Bi_s — By)scpos) = (Bs — Bo)scjou], and thus M; — B; £ M, — By. With this in
2
mind, Po{r < t} = Po{M; — B; > max,c 1) Bs — B} = P{Vt[n| > VI —t[¢]} = P{a5m <t}. O
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