Probability - Worked Exercises
 in Preparation for the Qualifying Exam

T.-Y. Li (kellty@pku.edu.cn)

References

[1] Durrett, R. Probability: Theory and Examples
[2] Williams, D. Probability with Martingales
[3] Walsh, J.B. Knowing the Odds: An Introduction to Probability
[4] Varadhan, S.R.S. Probability Theory
[5] Gut, A. Probability: A Graduate Course
[6] Chung, K.L. A Course in Probability Theory
[7] Chow, Y.S. \& Teicher, H. Probability Theory: Independence, Interchangeability, Martingales
[8] Shiryaev, A.N. Problems in Probability
[9] Chaumont, L. \& Yor, M. Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning
[10] Kallenberg, O. Foundations of Modern Probability
[11] Brémaud, P. Discrete Probability Models and Methods: Probability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding

0 Courses

[^0]
Contents

0 Courses $\quad-1$
1 Basic tools 1
1．1 Best constant approximation ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1
1．2 Integration－layer cake representation ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1
1．3 Generalized second Borel－Cantelli lemma ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2
1．4 Equality contained in conditional expectation ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2
1．5 Correlation inequality and independent copies ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2
1.6 Taking advantage of characteristic functions ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3

1．7 Inversion formula for point masses ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4
2 Stochastic convergence 4
2．1 Convergence in probability from the perspective of metrics．．．．．．．．．．．．．．．．．．．．． 4
2．2 Convergence of random series－Lévy＇s equivalence theorem ．．．．．．．．．．．．．．．．．．． 5
2．3 Series of nonnegative random variables ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5
2．4 Converse of strong law of large numbers ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 6
2．5 Asymptotic behavior of Gaussian maxima ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 6
2．6 Law of iterated logarithm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 7
3 Martingales 7
3．1 Switch at a stopping time ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 7
3.2 Optimal stopping with finite horizon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 8

3．3 Martingales derived from differentiation ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 9
3．4 Strong law of large numbers ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 9
4 Markov chains 9
4．1 First passage decomposition ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 9
4.2 Number of visits ．． 9

4．3 Superharmonicity and recurrence ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10
4．4 Green＇s function－potential theory ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 11
5 Stationary sequences 12
5.1 Invariant sets and functions ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12

5．2 Criteria for ergodicity ．．． 12
6 Brownian motion 12
6．1 Chaining and continuous modification of stochastic process ．．．．．．．．．．．．．．．．．．．． 12
6．2 Nonsmoothness of sample path ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14
6．3 Reflection principle and arcsine law ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14

1 Basic tools

1.1 Best constant approximation

Let m be a median of X, i.e., $\mathbb{P}\{X \leq m\} \geq 1 / 2$ and $\mathbb{P}\{X \geq m\} \geq 1 / 2$.

1. $m \in \arg \min _{x} \mathbb{E}|X-x|$.

Proof. If $a<b$, then $|X-b|-|X-a|=\left\{\begin{array}{l}(b-a)\left(1-2 \cdot \mathbb{1}_{\{X \geq b\}}\right)+2(a-X) \mathbb{1}_{\{a<X<b\}} \\ (b-a)\left(2 \cdot \mathbb{1}_{\{X \leq a\}}-1\right)+2(b-X) \mathbb{1}_{\{a<X<b\}}\end{array}\right.$. This implies that $x \mapsto \mathbb{E}|X-x|$ is nonincreasing on $(-\infty, m]$ and is nondecreasing on $[m, \infty)$.
2. $|\mathbb{E} X-m| \leq \sqrt{\operatorname{Var}(X)}$.

Proof. $|\mathbb{E} X-m| \leq \mathbb{E}|X-m| \leq \mathbb{E}|X-x| \leq \sqrt{\mathbb{E}|X-x|^{2}}, \forall x$.
3. $\mathbb{E} X=\arg \min _{x} \mathbb{E}|X-x|^{2}$.

Proof. $\mathbb{E}|X-x|^{2}=\mathbb{E}|X-\mathbb{E} X-(x-\mathbb{E} X)|^{2}=\mathbb{E}|X-\mathbb{E} X|^{2}+|x-\mathbb{E} X|^{2}$.

1.2 Integration - layer cake representation

1. (Integrability) Let $X \geq 0$. Then $\mathbb{E} X<\infty$ if and only if $\sum \mathbb{P}\{X>n\}<\infty$.

Proof. Note that $\mathbb{E} X=\int_{0}^{\infty} \mathbb{P}\{X>x\} \mathrm{d} x=\sum_{n=1}^{\infty} \int_{n-1}^{n} \mathbb{P}\{X>x\} \mathrm{d} x$, where for $n-1 \leq x \leq n$ one has

$$
\mathbb{P}\{X>n\} \leq \mathbb{P}\{X>x\} \leq \mathbb{P}\{X>n-1\}
$$

Therefore, $\sum_{n=1}^{\infty} \mathbb{P}\{X>n\} \leq \mathbb{E} X \leq 1+\sum_{n=1}^{\infty} \mathbb{P}\{X>n\}$.
2. (Exponential decay) If $\mathbb{P}\{X>x\}=O\left(q^{x}\right)$ as $x \rightarrow \infty$ for some $q \in(0,1)$, then $\mathbb{E} \mathrm{e}^{t X}<\infty$ for some $t>0$. The converse is also true, due to Chernoff's bound.

Proof. Since $\mathbb{P}\left\{\mathrm{e}^{t X}>n\right\}=\mathbb{P}\{X>\log (n) / t\} \lesssim q^{\log (n) / t}=n^{\log (q) / t}$, it suffices that $t<-\log (q)$.
3. If $X \Perp Y$, then $\mathbb{E}|X+Y|-\mathbb{E}|X-Y|=2 \int_{0}^{\infty}(\mathbb{P}\{X>u\}-\mathbb{P}\{X<-u\})(\mathbb{P}\{Y>u\}-\mathbb{P}\{Y<-u\}) \mathrm{d} u$. (Shepp) If X and Y are i.i.d., then $\mathbb{E}|X+Y| \geq \mathbb{E}|X-Y|$, with equality holding if and only if $X \stackrel{d}{=}-X$.

Proof. To begin with, denote by P and Q the distributions of X and Y, respectively. Then

$$
\begin{aligned}
\mathbb{E}(X+Y)^{+}=\int_{0}^{\infty} \mathbb{P}\{X+Y>t\} \mathrm{d} t & =\int_{\mathbb{R}^{3}} \mathbb{1}_{[t>0]} \mathbb{1}_{[x+y>t]} \mathrm{d} P(x) \mathrm{d} Q(y) \mathrm{d} t \\
& =\int_{\mathbb{R}^{3}} \mathbb{1}_{[y>-u]} \mathbb{1}_{[x>u]} \mathrm{d} P(x) \mathrm{d} Q(y) \mathrm{d} u \\
& =\int_{-\infty}^{\infty} \mathbb{P}\{X>u\} \mathbb{P}\{Y>-u\} \mathrm{d} u \\
& =\int_{0}^{\infty}(\mathbb{P}\{X>u\} \mathbb{P}\{Y>-u\}+\mathbb{P}\{X>-u\} \mathbb{P}\{Y>u\}) \mathrm{d} u
\end{aligned}
$$

Similarly, $\mathbb{E}(X+Y)^{-}=\int_{0}^{\infty} \mathbb{P}\{X+Y<-t\} \mathrm{d} t=\int_{0}^{\infty}(\mathbb{P}\{X<u\} \mathbb{P}\{Y<-u\}+\mathbb{P}\{X<-u\} \mathbb{P}\{Y<u\}) \mathrm{d} u$. By symmetry, $\left\{\begin{array}{l}\mathbb{E}(X-Y)^{+}=\int_{0}^{\infty}(\mathbb{P}\{X>u\} \mathbb{P}\{Y<u\}+\mathbb{P}\{X>-u\} \mathbb{P}\{Y<-u\}) \mathrm{d} u, \quad \text { Therefore, } \\ \mathbb{E}(X-Y)^{-}=\int_{0}^{\infty}(\mathbb{P}\{X<u\} \mathbb{P}\{Y>u\}+\mathbb{P}\{X<-u\} \mathbb{P}\{Y>-u\}) \mathrm{d} u .\end{array}\right.$

$$
\begin{aligned}
\mathbb{E}|X+Y|-\mathbb{E}|X-Y|= & \left(\mathbb{E}(X+Y)^{+}+\mathbb{E}(X+Y)^{-}\right)-\left(\mathbb{E}(X-Y)^{+}+\mathbb{E}(X-Y)^{-}\right) \\
= & \left(\mathbb{E}(X+Y)^{+}-\mathbb{E}(X-Y)^{+}\right)-\left(\mathbb{E}(X-Y)^{-}-\mathbb{E}(X+Y)^{-}\right) \\
= & \int_{0}^{\infty}(\mathbb{P}\{X>u\}+\mathbb{P}\{X>-u\})(\mathbb{P}\{Y>u\}-\mathbb{P}\{Y<-u\}) \mathrm{d} u \\
& -\int_{0}^{\infty}(\mathbb{P}\{X<u\}+\mathbb{P}\{X<-u\})(\mathbb{P}\{Y>u\}-\mathbb{P}\{Y<-u\}) \mathrm{d} u \\
= & 2 \int_{0}^{\infty}(\mathbb{P}\{X>u\}-\mathbb{P}\{X<-u\})(\mathbb{P}\{Y>u\}-\mathbb{P}\{Y<-u\}) \mathrm{d} u
\end{aligned}
$$

since $\mathbb{1}_{(-u, \infty)}-\mathbb{1}_{(-\infty, u)}=\mathbb{1}_{(u, \infty)}-\mathbb{1}_{(-\infty,-u)}$.

1．3 Generalized second Borel－Cantelli lemma

1．（Paley－Zygmund）If $X \geq 0$ with $0<\mathbb{E} X<\infty$ ，then $\mathbb{P}\{X>t \mathbb{E} X\} \geq(1-t)^{2}(\mathbb{E} X)^{2} / \mathbb{E} X^{2}, \forall t \in[0,1]$ ．
Proof． $\mathbb{E} X=\mathbb{E} X \mathbb{1}_{\{X>t \mathbb{E} X\}}+\mathbb{E} X \mathbb{1}_{\{X \leq t \mathbb{E} X\}} \leq \sqrt{\mathbb{E} X^{2} \mathbb{P}\{X>t \mathbb{E} X\}}+t \mathbb{E} X$.
2．（Chung－Erdős）If A_{1}, \ldots, A_{n} are events，then $\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) \geq\left[\sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)\right]^{2} / \sum_{i, j=1}^{n} \mathbb{P}\left(A_{i} \cap A_{j}\right)$ ．
Proof．Apply the Paley－Zygmund inequality to $X=\sum_{k=1}^{n} \mathbb{1}_{A_{k}}$ with $t=0$ ．
3．（Kochen－Stone）If $\sum_{k=1}^{\infty} \mathbb{P}\left(A_{k}\right)=\infty$ ，then $\mathbb{P}\left(A_{n}\right.$ i．o．$) \geq \limsup _{n \rightarrow \infty}\left[\sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)\right]^{2} / \sum_{i, j=1}^{n} \mathbb{P}\left(A_{i} \cap A_{j}\right)$ ．
First Proof．Let $x_{n}=\left[\sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)\right]^{2}$ and $y_{n}=\sum_{i, j=1}^{n} \mathbb{P}\left(A_{i} \cap A_{j}\right)$ ．By the Chung－Erdős inequality，we have $y_{n} \geq x_{n} \rightarrow \infty$ as $n \rightarrow \infty$ ，and then using the fact that $\sum_{i, j=m+1}^{n} \mathbb{P}\left(A_{i} \cap A_{j}\right) \leq y_{n}-y_{m}$ ，

$$
\mathbb{P}\left(\bigcup_{k=m+1}^{\infty} A_{k}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcup_{k=m+1}^{n} A_{k}\right) \geq \limsup _{n \rightarrow \infty} \frac{\left(\sqrt{x_{n}}-\sqrt{x_{m}}\right)^{2}}{y_{n}-y_{m}}=\limsup _{n \rightarrow \infty} \frac{x_{n}}{y_{n}} .
$$

Letting $m \rightarrow \infty$ completes the proof．
Second Proof．Let $X_{n}=\sum_{k=1}^{n} \mathbb{1}_{A_{k}}$ and $Y_{n}=X_{n} / \mathbb{E} X_{n}$ ．Then $\left\{A_{n}\right.$ i．o．$\}=\left\{\lim X_{n}=\infty\right\} \supset\left\{Y_{n}>t\right.$ i．o．$\}$ for any $t \in(0,1)$ ，since $\lim \mathbb{E} X_{n}=\infty$ ．Therefore，

$$
\mathbb{P}\left(A_{n} \text { i.o. }\right) \geq \lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcup_{k=n}^{\infty}\left\{Y_{k}>t\right\}\right) \geq \lim \sup _{n \rightarrow \infty} \mathbb{P}\left\{Y_{n}>t\right\},
$$

where $\mathbb{P}\left\{Y_{n}>t\right\} \geq(1-t)^{2} / \mathbb{E} Y_{n}^{2}=(1-t)^{2}\left(\mathbb{E} X_{n}\right)^{2} / \mathbb{E} X_{n}^{2}$ by the Paley－Zygmund inequality．

1．4 Equality contained in conditional expectation

Let X and Y be integrable random variables．
1．If $X \stackrel{d}{=} Y=\mathbb{E}[X \mid \mathscr{G}]$ ，then $X \stackrel{\text { a．s．}}{=} Y$ ．
Proof．First，consider the special case when X and Y are square integrable．Since $\mathbb{E} X^{2}=\mathbb{E} Y^{2}=\mathbb{E} X Y$ ， we have $\mathbb{E}(X-Y)^{2}=0$ and thus $X \stackrel{\text { a．s．}}{=} Y$ ．For the general case，we will show that

$$
a \vee X \wedge b \stackrel{\text { a.s. }}{=} a \vee Y \wedge b,
$$

and conclude by letting $a \searrow-\infty$ and $b \nearrow \infty$ ．By Jensen＇s inequality， $\mathbb{E}[a \vee X \mid \mathscr{G}] \geq a \vee Y$ ，where the equality must hold for $\mathbb{E} a \vee X=\mathbb{E} a \vee Y$ ．Finally，$a \vee X \wedge b \stackrel{d}{=} a \vee Y \wedge b=\mathbb{E}[a \vee X \wedge b \mid \mathscr{G}]$ ．

2．If $\mathbb{E}[X \mid Y]=Y$ and $\mathbb{E}[Y \mid X]=X$ ，then $X \stackrel{\text { a．s．}}{=} Y$ ．
Proof．Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and strictly increasing，e．g．，$h=\arctan$ ．Since

$$
\{X \neq Y\}=\{(X-Y)(h(X)-h(Y))>0\},
$$

it suffices to show $\mathbb{E}(X-Y)(h(X)-h(Y))=0$ ．To see this， $\mathbb{E} Y h(X)=\mathbb{E}\{\mathbb{E}[Y \mid X] h(X)\}=\mathbb{E} X h(X)$ ．

1．5 Correlation inequality and independent copies

1．（Harris－FKG／Chebyshev－Kimball）Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be nondecreasing functions，and $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector with independent coordinates．Then $\mathbb{E} f(\boldsymbol{X}) g(\boldsymbol{X}) \geq \mathbb{E} f(\boldsymbol{X}) \mathbb{E} g(\boldsymbol{X})$ ．

Proof．First，consider the case $n=1$ ．Let X^{\prime} be an independent copy of X ．Taking the expectation of

$$
\left(f(X)-f\left(X^{\prime}\right)\right)\left(g(X)-g\left(X^{\prime}\right)\right) \geq 0
$$

leads to the desired result. Then we perform induction on n. Define $f_{1}\left(x_{1}\right)=\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}=x_{1}\right]$ and $g_{1}\left(x_{1}\right)=\mathbb{E}\left[g(\boldsymbol{X}) \mid X_{1}=x_{1}\right]$, which preserves monotonicity. It follows from the inductive hypothesis that

$$
\mathbb{E}\left[f(\boldsymbol{X}) g(\boldsymbol{X}) \mid X_{1}\right] \geq f_{1}\left(X_{1}\right) g_{1}\left(X_{1}\right)
$$

where $\mathbb{E} f_{1}\left(X_{1}\right) g_{1}\left(X_{1}\right) \geq \mathbb{E} f_{1}\left(X_{1}\right) \mathbb{E} g_{1}\left(X_{1}\right)=\mathbb{E} f(\boldsymbol{X}) \mathbb{E} g(\boldsymbol{X})$.
2. (Kac) If $\mathbb{E} \mathrm{e}^{\sqrt{-1}(s X+t Y)}=\mathbb{E} \mathrm{e}^{\sqrt{-1} s X} \mathbb{E} \mathrm{e}^{\sqrt{-1} t Y}$ for any s and t, then X and Y are independent.

Proof. Let ξ and η be independent random variables such that $\xi \stackrel{d}{=} X$ and $\eta \stackrel{d}{=} Y$. We have

$$
\mathbb{E} \mathrm{e}^{\sqrt{-1}(s X+t Y)}=\mathbb{E} \mathrm{e}^{\sqrt{-1} s X} \mathbb{E} \mathrm{e}^{\sqrt{-1} t Y}=\mathbb{E} \mathrm{e}^{\sqrt{-1} s \xi} \mathbb{E} \mathrm{e}^{\sqrt{-1} t \eta}=\mathbb{E} \mathrm{e}^{\sqrt{-1}(s \xi+t \eta)}
$$

and thus $(X, Y) \stackrel{d}{=}(\xi, \eta)$ by the uniqueness of characteristic functions.
3. If ϕ is a characteristic function, then so are $\phi^{2},|\phi|^{2}$, and $\operatorname{Re} \phi$.

Proof. Suppose that $\phi(t)=\mathbb{E} \mathrm{e}^{\sqrt{-1} t} X$ for some random variable X. Let X^{\prime} be an independent copy of X. Then $\phi(t)^{2}=\mathbb{E} \mathrm{e}^{\sqrt{-1} t\left(X+X^{\prime}\right)}$ and $|\phi(t)|^{2}=\mathbb{E} \mathrm{e}^{\sqrt{-1} t\left(X-X^{\prime}\right)}$. Let $Y=X_{\{U=1\}}-X^{\prime} \mathbb{1}_{\{U=0\}}$ for $U \sim \operatorname{Bernoulli}(1 / 2)$ independent of $\left\{X, X^{\prime}\right\}$. Then $\mathbb{E} \mathrm{e}^{\sqrt{-1} t Y}=\frac{1}{2}(\phi(t)+\phi(-t))=\operatorname{Re} \phi(t)$.

1.6 Taking advantage of characteristic functions

Given a random variable X, denote $F_{X}(x)=\mathbb{P}\{X \leq x\}$ and $\phi_{X}(t)=\mathbb{E} \mathrm{e}^{\sqrt{-1} t X}=\mathbb{E} \cos (t X)+\sqrt{-1} \mathbb{E} \sin (t X)$.

1. (Constancy and independence) In each of the following cases, X is almost surely a constant:
(a) $\left|\phi_{X}\right| \equiv 1$;
(b) $X \Perp X$;
(c) $X \Perp Y$ and $X+Y$ is a constant.

Proof. By the uniqueness of characteristic functions, it suffices that $\phi_{X} \equiv 1$.
(a) For every $t \in \mathbb{R}$, note that $\left|\phi_{X}(t)\right|^{2}=[\mathbb{E} \cos (t X)]^{2}+[\mathbb{E} \sin (t X)]^{2} \leq \mathbb{E} \cos ^{2}(t X)+\mathbb{E} \sin ^{2}(t X)=1$ with equality holding only if $\cos (t X) \stackrel{\text { a.s. }}{=} c_{t}$ and $\sin (t X) \stackrel{\text { a.s. }}{=} s_{t}$ for some constants c_{t} and s_{t}, which means that

$$
t X \in\left(\pm \arccos \left(c_{t}\right)+2 \pi \mathbb{Z}\right) \cap\left(\left\{\arcsin \left(s_{t}\right), \pi-\arcsin \left(s_{t}\right)\right\}+2 \pi \mathbb{Z}\right)
$$

Then let t varies. (b) \& (c) can be reduced to (a).
2. (Second moment) $\frac{11}{24} \mathbb{E}\left[X^{2} ;|X|<\frac{1}{t}\right] \leq \frac{1}{t^{2}}\left(1-\operatorname{Re} \phi_{X}(t)\right), \forall t>0$. It follows that $\mathbb{E} X^{2}<\infty$ if $\phi_{X}^{\prime \prime}(0)$ exists. Proof. Note that $1-\cos u \geq \frac{u^{2}}{2}-\frac{u^{4}}{24}$, so $\int_{-\infty}^{\infty}(1-\cos (t x)) \mathrm{d} F_{X}(x) \geq \int_{-1 / t}^{1 / t}\left(\frac{1}{2}-\frac{t^{2} x^{2}}{24}\right) t^{2} x^{2} \mathrm{~d} F_{X}(x)$ where $\frac{1}{2}-\frac{t^{2} x^{2}}{24} \geq \frac{11}{24}$. As $t \rightarrow 0$, we have $1-\operatorname{Re} \phi_{X}(t)=-\frac{1}{2}\left(\phi_{X}(t)+\phi_{X}(-t)-2 \phi_{X}(0)\right) \sim-\frac{1}{2} \phi_{X}^{\prime \prime}(0) t^{2}$.
If $\phi_{X}(t)=1-c t^{2}+o\left(t^{2}\right)$ as $t \rightarrow 0$ for some constant $c \in \mathbb{R}$, then $\mathbb{E} X=0$ and $\mathbb{E} X^{2}=2 c$. In particular, $X \stackrel{\text { a.s. }}{=} 0$ if $\phi_{X}(t)=1+o\left(t^{2}\right)$. As a corollary, $\phi(t)=\mathrm{e}^{-|t|^{\alpha}}$ is not a characteristic function for any $\alpha>2$.

Proof. We have $\phi_{X}^{\prime}(t)=\sqrt{-1} \mathbb{E} X \mathrm{e}^{\sqrt{-1} t} X$ and $\phi_{X}^{\prime \prime}(t)=-\mathbb{E} X^{2} \mathrm{e}^{\sqrt{-1} t} X$. Then put $t=0$.
3. $\mathbb{E}|X|^{r}=K_{r} \int_{-\infty}^{\infty} \frac{1-\operatorname{Re} \phi_{X}(t)}{|t|^{r+1}} \mathrm{~d} t$ for $r \in(0,2)$, where K_{r} is a constant only depending on r.
(Shepp) If X and Y are i.i.d., then $\mathbb{E}|X+Y|^{r} \geq \mathbb{E}|X-Y|^{r}$, with equality holding if and only if $X \stackrel{d}{=}-X$.
Proof. Let $K_{r}=1 / \int_{-\infty}^{\infty} \frac{1-\cos u}{|u|^{r+1}} \mathrm{~d} u$, which can be shown to be $\frac{\Gamma(r+1)}{\pi} \sin \frac{r \pi}{2}$. Then

$$
|x|^{r}=K_{r} \int_{-\infty}^{\infty} \frac{1-\cos (x t)}{|t|^{r+1}} \mathrm{~d} t
$$

and thus $\mathbb{E}|X|^{r}=\int_{-\infty}^{\infty}|x|^{r} \mathrm{~d} F_{X}(x)$ can be evaluated by Fubini's theorem. Based on such a formula, Shepp's inequality follows from the fact that $1-\operatorname{Re} \phi_{X}^{2} \geq 1-\left|\phi_{X}\right|^{2}$, with equality holding if and only if $\phi_{X}^{2} \geq 0$ if and only if ϕ_{X} is real-valued if and only if $X \stackrel{d}{=}-X$.

See https://artofproblemsolving.com/wiki/index.php/2021_IMO_Problems/Problem_2 for fun.

1.7 Inversion formula for point masses

1. Let $\hat{\mu}(t)=\int_{\mathbb{R}} \mathrm{e}^{\sqrt{-1} t x} \mathrm{~d} \mu(x)$ for μ a probability measure on \mathbb{R}. Then $\mu\{a\}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \mathrm{e}^{-\sqrt{-1} a t} \hat{\mu}(t) \mathrm{d} t$. Proof. Fix $a \in \mathbb{R}$. By Fubini's theorem, $\frac{1}{2 T} \int_{-T}^{T} \mathrm{e}^{-\sqrt{-1} a t} \hat{\mu}(t) \mathrm{d} t=\int_{\mathbb{R}}\left(\frac{1}{2 T} \int_{-T}^{T} \mathrm{e}^{\sqrt{-1}(x-a) t} \mathrm{~d} t\right) \mathrm{d} \mu(x)$, where $\frac{1}{2 T} \int_{-T}^{T} \mathrm{e}^{\sqrt{-1}(x-a) t} \mathrm{~d} t=\frac{1}{2 T} \int_{-T}^{T} \cos ((x-a) t) \mathrm{d} t \rightarrow \mathbb{1}_{[x=a]}$ and the dominated convergence applies.
2. If $X \sim P, Y \sim Q$, and $X \Perp Y$, then $\mathbb{P}\{X=Y\}=\sum_{x} P\{x\} Q\{x\}$.

Note that $P\{x\}>0$ for at most countably many x.
Proof. $\mathbb{P}\{X=Y\}=\mathbb{E} \mathbb{1}_{\{X=Y\}}=\iint \mathbb{1}_{[x=y]} \mathrm{d} P(x) \mathrm{d} Q(y)=\sum_{x}(P \otimes Q)(\{x\} \times\{x\})=\sum_{x} P\{x\} Q\{x\}$.
3. Let $\phi_{X}(t)=\mathbb{E} \mathrm{e}^{\sqrt{-1} t}$. Then $\mathbb{P}\{X=x\}=0$ for all x if and only if $\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|\phi_{X}(t)\right|^{2} \mathrm{~d} t=0$.

Proof. Consider μ to be the distribution of $X-X^{\prime}$, where X^{\prime} is an independent copy of X. Combining the previous results, $\sum_{x} \mathbb{P}\{X=x\}^{2}=\mathbb{P}\left\{X-X^{\prime}=0\right\}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|\phi_{X}(t)\right|^{2} \mathrm{~d} t$.

Therefore, the distribution of X has no point mass if $\phi_{X}(t) \rightarrow 0$ as $t \rightarrow \infty$, which can be derived by the Riemann-Lebesgue lemma when a probability density function exists. However, the converse is false, e.g., $2 \sum_{k=1}^{\infty} X_{k} / 3^{k}$ has the Cantor distribution if $X_{1}, X_{2}, \ldots \xrightarrow{\text { i.i.d. }} \operatorname{Bernoulli}(1 / 2)$, whose characteristic function is given by $t \mapsto \prod_{k=1}^{\infty} \frac{1}{2}\left(1+\mathrm{e}^{2 \sqrt{-1} t / 3^{k}}\right)$ and has the same value on $\left\{3^{n} \pi\right\}_{n=0}^{\infty}$.

2 Stochastic convergence

2.1 Convergence in probability from the perspective of metrics

The Ky Fan metric is defined as $\alpha(X, Y)=\inf \{\varepsilon>0: \mathbb{P}\{|X-Y|>\varepsilon\} \leq \varepsilon\}$ for random variables X and Y. Also, introduce $\beta(X, Y)=\mathbb{E} \frac{|X-Y|}{1+|X-Y|}$ and $\gamma(X, Y)=\mathbb{E} \min \{|X-Y|, 1\}$.

1. (Triangle inequality) $\alpha(X, Z) \leq \alpha(X, Y)+\alpha(Y, Z)$.

Proof. $\mathbb{P}\left\{|X-Z|>\varepsilon_{1}+\varepsilon_{2}\right\} \leq \mathbb{P}\left\{|X-Y|>\varepsilon_{1}\right\}+\mathbb{P}\left\{|Y-Z|>\varepsilon_{2}\right\}$.
One can check that α, β, γ are metrics indeed.
2. (Equivalence) $\alpha^{2} /(1+\alpha) \leq \beta \leq 2 \alpha /(1+\alpha)$ and (trivially) $\beta \leq \gamma \leq 2 \beta$.

Proof. Write $\alpha=\alpha(X, Y), \beta=\beta(X, Y)$, and $T=|X-Y|$. On one hand, $\beta \geq \frac{\varepsilon}{1+\varepsilon} \mathbb{P}\{T>\varepsilon\} \xrightarrow{\varepsilon \rightarrow \alpha} \frac{\alpha^{2}}{1+\alpha}$. On the other hand, $\beta=\int_{0}^{1} \mathbb{P}\left\{\frac{T}{1+T}>u\right\} \mathrm{d} u=\int_{0}^{\infty} \mathbb{P}\{T>t\} \frac{\mathrm{d} t}{(1+t)^{2}} \leq \int_{0}^{\alpha} \frac{\mathrm{d} t}{(1+t)^{2}}+\int_{\alpha}^{\infty} \alpha \frac{\mathrm{d} t}{(1+t)^{2}}=\frac{2 \alpha}{1+\alpha}$.
3. $X_{n} \xrightarrow{\mathbb{P}} X \Longleftrightarrow \gamma\left(X_{n}, X\right) \rightarrow 0 \Longleftrightarrow \beta\left(X_{n}, X\right) \rightarrow 0 \Longleftrightarrow \alpha\left(X_{n}, X\right) \rightarrow 0$.

Proof. $\left|X_{n}-X\right| \xrightarrow{\mathbb{P}} 0 \Longleftrightarrow \min \left\{\left|X_{n}-X\right|, 1\right\} \xrightarrow{\mathbb{P}} 0 \Longleftrightarrow \mathbb{E} \min \left\{\left|X_{n}-X\right|, 1\right\} \rightarrow 0$.
4. (Uniqueness) If $X_{n} \xrightarrow{\mathbb{P}} X$ and $X_{n} \xrightarrow{\mathbb{P}} Y$, then $X \stackrel{\text { a.s. }}{=} Y$.
5. If $\left\{X_{n}\right\}$ is Cauchy in that $\mathbb{P}\left\{\left|X_{n}-X_{m}\right|>\varepsilon\right\} \xrightarrow{m, n \rightarrow \infty} 0(\forall \varepsilon>0)$, then X_{n} converges in probability.

Proof. Now that $\alpha\left(X_{n}, X_{m}\right) \xrightarrow{m, n \rightarrow \infty} 0$, we choose $\left\{n_{j}\right\}$ such that $\sup _{m>n_{j}} \mathbb{P}\left\{\left|X_{m}-X_{n_{j}}\right|>2^{-j}\right\} \leq 2^{-j}$. Then $A_{j}=\left\{\left|X_{n_{j+1}}-X_{n_{j}}\right|>2^{-j}\right\}$ satisfy that $\sum \mathbb{P}\left(A_{j}\right) \leq \sum 2^{-j}<\infty$, so the first Borel-Cantelli lemma implies that $A=\left\{A_{j}\right.$ i.o. $\}$ occurs with probability zero. Next we restrict ourselves to A^{\complement}, on which $\lim _{k \rightarrow \infty} \sum_{j=k}^{\infty}\left|X_{n_{j+1}}-X_{n_{j}}\right| \leq \lim _{k \rightarrow \infty} \sum_{j=k}^{\infty} 2^{-j}=0$ and thus $\lim _{k \rightarrow \infty} X_{n_{k}}=X_{n_{1}}+\sum_{j=1}^{\infty}\left(X_{n_{j+1}}-X_{n_{j}}\right)$ exists and is finite. Finally, it must hold that X_{n} converges to $X=\limsup _{k \rightarrow \infty} X_{n_{k}}$ in probability, as $\left\{\left|X_{n}-X\right|>\varepsilon\right\} \subset\left\{\left|X_{n}-X_{n_{k}}\right|>\varepsilon / 2\right\} \cup\left\{\left|X_{n_{k}}-X\right|>\varepsilon / 2\right\}$.

2.2 Convergence of random series - Lévy's equivalence theorem

Let $S_{n}=\sum_{i=1}^{n} X_{i}$ where X_{i} 's are independent random variables.

1. (Ottaviani-Skorokhod) It holds for $\lambda>0$ and $\mu>0$ that

$$
\mathbb{P}\left\{\max _{m<j \leq n}\left|S_{j}-S_{m}\right|>\lambda+\mu\right\} \min _{m<k \leq n} \mathbb{P}\left\{\left|S_{n}-S_{k}\right| \leq \mu\right\} \leq \mathbb{P}\left\{\left|S_{n}-S_{m}\right|>\lambda\right\}
$$

Proof. Note that $\left\{\left|S_{n}-S_{m}\right|>\lambda\right\} \supset \bigcup_{k=m+1}^{n}\left(\left\{\inf \left\{j>m:\left|S_{j}-S_{m}\right|>\lambda+\mu\right\}=k\right\} \cap\left\{\left|S_{n}-S_{k}\right| \leq \mu\right\}\right)$.
2. (Etemadi) $\mathbb{P}\left\{\max _{m<j \leq n}\left|S_{j}-S_{m}\right|>3 \lambda\right\} \leq 2 \mathbb{P}\left\{\left|S_{n}-S_{m}\right|>\lambda\right\}+\max _{m<k \leq n} \mathbb{P}\left\{\left|S_{k}-S_{m}\right|>\lambda\right\}, \forall \lambda>0$.

Proof. From 11, $\mathbb{P}\left\{\max _{m<j \leq n}\left|S_{j}-S_{m}\right|>3 \lambda\right\}-\mathbb{P}\left\{\left|S_{n}-S_{m}\right|>\lambda\right\} \leq \max _{m<k \leq n} \mathbb{P}\left\{\left|S_{n}-S_{k}\right|>2 \lambda\right\}$, but $\mathbb{P}\left\{\left|S_{n}-S_{k}\right|>2 \lambda\right\} \leq \mathbb{P}\left\{\left|S_{n}-S_{m}\right|>\lambda\right\}+\mathbb{P}\left\{\left|S_{k}-S_{m}\right|>\lambda\right\}$.
3. If S_{n} converges in probability, then S_{n} converges almost surely.

Proof. It follows from $\mathbb{P}\left\{\left|S_{n}-S_{m}\right|>\lambda\right\} \xrightarrow{m, n \rightarrow \infty} 0$ that $\mathbb{P}\left\{\max _{m<j \leq n}\left|S_{j}-S_{m}\right|>3 \lambda\right\} \xrightarrow{m, n \rightarrow \infty} 0$ by Etemadi's inequality. Then

$$
\mathbb{P}\left\{\sup _{j, k>m}\left|S_{j}-S_{k}\right|>6 \lambda\right\} \xrightarrow{m \rightarrow \infty} 0
$$

However, $\sup _{j, k>m}\left|S_{j}-S_{k}\right|$ decreases with m and thus admits a pointwise limit Z. The uniqueness of the limit in probability forces that $Z \stackrel{\text { a.s. }}{=} 0$, whence $\left\{S_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence and converges.
4. If S_{n} converges in distribution, then S_{n} converges in probability.

Proof. Since any Cauchy sequence in probability is convergent in probability, it suffices that $Y_{j}=S_{n_{j}}-S_{m_{j}}$ converges to zero in probability, or equivalently $Y_{j} \xrightarrow{d} 0$, for all sequences $\left\{n_{j}\right\}$ and $\left\{m_{j}\right\}$ with $n_{j}>m_{j}$. For $|t|$ small enough,

$$
\mathbb{E} \mathrm{e}^{\sqrt{-1} t S_{m_{j}}} \mathbb{E} \mathrm{e}^{\sqrt{-1} t Y_{j}}=\mathbb{E} \mathrm{e}^{\sqrt{-1} t S_{n_{j}}}
$$

where $\lim _{j \rightarrow \infty} \mathbb{E} \mathrm{e}^{\sqrt{-1} t S_{m_{j}}}=\lim _{j \rightarrow \infty} \mathbb{E} \mathrm{e}^{\sqrt{-1} t} S_{n_{j}}$ is nonzero. Hence, $\mathbb{E} \mathrm{e}^{\sqrt{-1} t Y_{j}} \rightarrow 1$ for t in a neighborhood of 0 . We then conclude by Lévy's continuity theorem.

2.3 Series of nonnegative random variables

Let $S_{n}=\sum_{i=1}^{n} X_{i}$ where $X_{i} \geq 0$ are independent. Then $S_{n} \nearrow S_{\infty}$.

1. Kolmogorov's zero-one law ensures that $\left\{\sum_{n=1}^{\infty} X_{n}<\infty\right\}$ is \mathbb{P}-trivial. The following are equivalent:
(a) $\sum_{n=1}^{\infty} X_{n}<\infty$ a.s.;
(b) $\sum_{n=1}^{\infty}\left(\mathbb{P}\left\{X_{n}>1\right\}+\mathbb{E}\left[X_{n} ; X_{n} \leq 1\right]\right)<\infty$;
(c) $\sum_{n=1}^{\infty} \mathbb{E} \frac{X_{n}}{1+X_{n}}<\infty$.

Proof. By Kolmogorov's three-series theorem, (a) $\Longleftrightarrow \sum_{n=1}^{\infty}\left[\mathbb{P}\left\{X_{n}>1\right\}+\mathbb{E} Y_{n}+\operatorname{Var}\left(Y_{n}\right)\right]<\infty$, where $Y_{n}=X_{n} \mathbb{1}_{\left\{X_{n} \leq 1\right\}}$. Since $\operatorname{Var}\left(Y_{n}\right) \leq \mathbb{E} Y_{n}^{2}$ and $Y_{n}^{2} \leq Y_{n}$, we obtain that $(\mathrm{a}) \Longleftrightarrow$ (b). As for $(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$, note that $\frac{1}{2}\left(\mathbb{P}\left\{X_{n}>1\right\}+\mathbb{E}\left[X_{n} ; X_{n} \leq 1\right]\right) \leq \mathbb{E} \frac{X_{n}}{1+X_{n}}<\mathbb{P}\left\{X_{n}>1\right\}+\mathbb{E}\left[X_{n} ; X_{n} \leq 1\right]$.
2. (Chi-squares) Suppose $\sqrt{X_{n}} \sim \mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$. In other words, $X_{n}=\left(\mu_{n}+\sigma_{n} Z_{n}\right)^{2}$ where $Z_{n} \sim \mathcal{N}(0,1)$.
(a) If S_{n} converges in L^{1}, then $\sum_{n=1}^{\infty}\left(\mu_{n}^{2}+\sigma_{n}^{2}\right)<\infty$.

Proof. $\mathbb{E} S_{\infty}=\sum_{n=1}^{\infty}\left(\mu_{n}^{2}+\sigma_{n}^{2}\right)$.
(b) If $\sum_{n=1}^{\infty}\left(\mu_{n}^{2}+\sigma_{n}^{2}\right)<\infty$, then S_{n} converges in L^{p} for any $p \in[1, \infty)$.

Proof. $\sum\left\|X_{n}\right\|_{L^{p}} \leq \sum\left(\mu_{n}^{2}+2\left|\mu_{n} \sigma_{n}\right|\left\|Z_{n}\right\|_{L^{p}}+\sigma_{n}^{2}\left\|Z_{n}^{2}\right\|_{L^{p}}\right)$ where $2\left|\mu_{n} \sigma_{n}\right| \leq \mu_{n}^{2}+\sigma_{n}^{2}$.
3. A useful fact is that $S_{\infty} \stackrel{\text { a.s. }}{=} \infty \Longleftrightarrow 0=\mathbb{E} \mathrm{e}^{-S_{\infty}}=\prod_{n=1}^{\infty} \mathbb{E} \mathrm{e}^{-X_{n}}$. Also, $S_{\infty}<\infty$ a.s. if $\mathbb{E} S_{\infty}<\infty$.
（a）Suppose $\sqrt{X_{n}} \sim \mathcal{N}\left(0, \sigma_{n}^{2}\right)$ ．Then $S_{\infty} \stackrel{\text { a．s．}}{=} \infty \Longleftrightarrow \sum_{n=1}^{\infty} \sigma_{n}^{2}=\infty$ ．
Proof．$\Pi \mathbb{E} \mathrm{e}^{-X_{n}}=\Pi \mathbb{E} \mathrm{e}^{-\sigma_{n}^{2} Z_{n}^{2}}=\Pi\left(1+2 \sigma_{n}^{2}\right)^{-1 / 2}$ where $\Pi\left(1+2 \sigma_{n}^{2}\right) \geq 1+2 \sum \sigma_{n}^{2}$ ．
（b）Suppose X_{n} is exponentially distributed with rate λ_{n} ．Then $S_{\infty} \stackrel{\text { a．s．}}{=} \infty \Longleftrightarrow \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty$ ．

$$
\text { Proof. } 1 / \Pi \mathbb{E} \mathrm{e}^{-X_{n}}=1 / \Pi \frac{\lambda_{n}}{\lambda_{n}+1}=\Pi\left(1+\frac{1}{\lambda_{n}}\right) \geq 1+\sum \frac{1}{\lambda_{n}} .
$$

2．4 Converse of strong law of large numbers

Let X, X_{1}, X_{2}, \ldots be i．i．d．，$S_{n}=\sum_{i=1}^{n} X_{i}$ ，and $p>0$ ．
1． $\mathbb{E}|X|^{p}<\infty \Longleftrightarrow \lim \left|X_{n}\right|^{p} / n \stackrel{\text { a．s．}}{=} 0 \Longleftrightarrow X_{n} / n^{1 / p} \xrightarrow{\text { a．s．}} 0$.
Proof．For any $\varepsilon>0$ ，we have $\mathbb{E}|X|^{p} / \varepsilon<\infty \Longleftrightarrow \sum \mathbb{P}\left\{|X|^{p}>n \varepsilon\right\}<\infty \Longleftrightarrow \mathbb{P}\left\{\left|X_{n}\right|^{p}>n \varepsilon\right.$ i．o．$\}=0$ and $\left\{\limsup \left|X_{n}\right|^{p} / n>\varepsilon\right\} \subset\left\{\left|X_{n}\right|^{p}>n \varepsilon\right.$ i．o．$\} \subset\left\{\limsup \left|X_{n}\right|^{p} / n \geq \varepsilon\right\}$ ．

2．If $S_{n} / n^{1 / p} \xrightarrow{\text { a．s．}} 0$ and $p \geq 1$ ，then $\mathbb{E}|X|^{p}<\infty$ and $\mathbb{E} X=0$ ．
Proof．Note that $X_{n} / n^{1 / p}=S_{n} / n^{1 / p}-(1-1 / n)^{1 / p} S_{n-1} /(n-1)^{1 / p} \xrightarrow{\text { a．s．}} 0-0=0$ ，so $\mathbb{E}|X|^{p}<\infty$ ．Since $\mathbb{E}|X|<\infty$ ，Kolmogorov＇s SLLN gives $S_{n} / n \xrightarrow{\text { a．s．}} \mathbb{E} X$ ．Also，$S_{n} / n=n^{1 / p-1} S_{n} / n^{1 / p} \xrightarrow{\text { a．s．}} 0$ ．

2．5 Asymptotic behavior of Gaussian maxima

Let $Z, Z_{1}, Z_{2}, \ldots \stackrel{\text { i．i．d．}}{\sim} \mathcal{N}(0,1)$ ，whose probability density function is $\varphi(z)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2}$ ．Let $M_{n}=\max _{1 \leq i \leq n} Z_{i}$ ． Since $\mathbb{P}\left\{M_{n} \leq z\right\}=\mathbb{P}\{Z \leq z\}^{n}$ and $\left(1-\frac{1}{n}\right)^{n} \rightarrow \mathrm{e}^{-1}$ ，let $e_{-}(x)=\mathrm{e}^{-x}$ and $b_{n}=\inf \left\{b: \mathbb{P}\{Z>b\} \leq \frac{1}{n}\right\} \nearrow \infty$ ．

1．（Mills ratio） $1 / z-1 / z^{3}<z /\left(z^{2}+1\right)<\mathbb{P}\{Z>z\} / \varphi(z)<1 / z$ for $z>0$ ．
Proof．$\frac{1}{z} \mathrm{e}^{-z^{2} / 2}-\int_{z}^{\infty} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u=\int_{z}^{\infty} \frac{1}{u^{2}} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u<\frac{1}{z^{2}} \int_{z}^{\infty} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u$ ．
2． $\lim _{z \rightarrow \infty} \mathbb{P}\{Z>z+\theta / z\} / \mathbb{P}\{Z>z\}=e_{-}(\theta), \forall \theta \in \mathbb{R}$ ．
Proof．Since $\mathbb{P}\{Z>z\} \sim \frac{1}{z} \varphi(z)$ as $z \rightarrow \infty$ ，we have $\mathbb{P}\left\{Z>z+\frac{\theta}{z}\right\} / \mathbb{P}\{Z>z\} \sim \varphi\left(z+\frac{\theta}{z}\right) / \varphi(z) \sim e_{-}(\theta)$ ．
3．（Extreme value distribution）Let $a_{n}=1 / b_{n}=o(1)$ ．Then $\mathbb{P}\left\{\left(M_{n}-b_{n}\right) / a_{n} \leq x\right\} \rightarrow e_{-}\left(e_{-}(x)\right)$ for $x \in \mathbb{R}$ ．
Proof． $\mathbb{P}\left\{\left(M_{n}-b_{n}\right) / a_{n} \leq x\right\}=\left(1-\mathbb{P}\left\{Z>a_{n} x+b_{n}\right\}\right)^{n}$ where $\mathbb{P}\left\{Z>a_{n} x+b_{n}\right\} \sim \frac{1}{n} e_{-}(x)$ using 2 ．
Recall the Fisher－Tippett－Gnedenko theorem．
4．$b_{n} \sim \sqrt{2 \log n}$ and thus $M_{n} / \sqrt{2 \log n} \xrightarrow{\mathbb{P}} 1$ ．
Proof．For n large enough， $\mathbb{P}\left\{Z>\sqrt{2 \log n-2 \log v_{n}}\right\} \sim \frac{v_{n}}{\sqrt{4 \pi \log n}} \cdot \frac{1}{n}$ if $1 \leq v_{n}=O(\log n)$ ．By choosing v_{n} appropriately，

$$
\sqrt{2 \log n-2 \log \log n} \leq b_{n} \leq \sqrt{2 \log n-\log \log n}
$$

Then $M_{n}-\sqrt{2 \log n}=M_{n}-b_{n}+b_{n}-\sqrt{2 \log n}=O_{\mathbb{P}}\left(a_{n}\right)+o(\sqrt{2 \log n})=o_{\mathbb{P}}(\sqrt{2 \log n})$ ．
5． $\mathbb{E} M_{n} / \sqrt{2 \log n} \rightarrow 1$ ．
Proof．Jensen＇s inequality gives $\mathrm{e}^{t \mathbb{E} M_{n}} \leq \mathbb{E} \mathrm{e}^{t M_{n}}$ for $t \in \mathbb{R}_{+}$．But $\mathrm{e}^{t M M_{n}} \leq \sum_{i=1}^{n} \mathrm{e}^{t Z_{i}}$ ，leading to

$$
\mathbb{E}^{t M_{n}} \leq n \mathbb{E} \mathrm{e}^{t Z}=n \mathrm{e}^{t^{2} / 2} .
$$

Thus， $\mathbb{E} M_{n} \leq \frac{1}{t} \log \left(n e^{t^{2} / 2}\right)=\frac{\log n}{t}+\frac{t}{2}$ ．We obtain $\mathbb{E} M_{n} \leq \sqrt{2 \log n}$ by optimizing the upper bound over t ． As for the lower bound， $0 \leq \mathbb{E} M_{n}^{-} \leq \mathbb{E} Z^{-}=O(1)$ ，and $\mathbb{E} M_{n}^{+} / \sqrt{2 \log n}=\int_{0}^{\infty} \mathbb{P}\left\{M_{n} / \sqrt{2 \log n}>u\right\} \mathrm{d} u$ has $\liminf \geq \int_{0}^{\infty} \liminf \mathbb{P}\left\{M_{n} / \sqrt{2 \log n}>u\right\}$ d u by Fatou＇s lemma，where $\mathbb{P}\left\{M_{n} / \sqrt{2 \log n}>u\right\} \rightarrow \mathbb{1}_{[u<1]}$ for almost all u ．This shows that $\lim \inf \mathbb{E} M_{n} / \sqrt{2 \log n}=\lim \inf \mathbb{E} M_{n}^{+} / \sqrt{2 \log n} \geq 1$ ．

2.6 Law of iterated logarithm

Let $X=\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$be a stochastic process with continuous sample paths. Denote $h_{t}=\sqrt{2 t \log \log t}$.

1. (Upper bound derived by sub-Gaussianity) If there exist $0<v_{t}=O(t)$ such that $\mathbb{P}\left\{X_{t}^{*}>\lambda\right\} \lesssim \mathrm{e}^{-\lambda^{2} /\left(2 v_{t}\right)}$ for $\lambda>0$, then $\lim \sup _{t \rightarrow \infty} X_{t}^{*} / h_{t} \leq 1$ a.s., where $X_{t}^{*}=\sup _{s \leq t} X_{s}$ is the running maximum.

Proof. For any $t>\mathrm{e}^{\mathrm{e}}$ and $c>1$, we have $\mathbb{P}\left\{X_{t}^{*}>c h_{t}\right\} \lesssim \mathrm{e}^{-c^{2}\left(t / v_{t}\right) \log \log t} \lesssim(\log t)^{-c^{2}}$. Choosing $t_{n}=q^{n}$ for some $q>1$, it follows that

$$
\mathbb{P}\left\{X_{q^{n}}^{*}>c h_{q^{n}}\right\} \lesssim n^{-c^{2}}
$$

Since $\sum n^{-c^{2}}<\infty$, we obtain that $\mathbb{P}\left\{X_{q^{n}}^{*}>c h_{q^{n}}\right.$ i.o. $\}=0$ by the Borel-Cantelli lemma. This implies that $\lim \sup _{n \rightarrow \infty} X_{q^{n}}^{*} / h_{q^{n}} \leq c$ a.s.. Note that

$$
X_{t}^{*} / h_{t} \leq X_{q^{n}}^{*} / h_{q^{n-1}}=\left(X_{q^{n}}^{*} / h_{q^{n}}\right)\left(h_{q^{n}} / h_{q^{n-1}}\right), t \in\left[q^{n-1}, q^{n}\right]
$$

Thus, $\lim \sup _{t \rightarrow \infty} X_{t}^{*} / h_{t} \leq c \sqrt{q}$ a.s.. Letting $c \searrow 1$ and $q \searrow 1$ completes the proof.
2. (Lower bound) If $\lim \sup _{t \rightarrow \infty}\left(-X_{t}\right) / h_{t} \leq 1$ a.s. and $\limsup _{t \rightarrow \infty}\left(X_{t}-X_{t / q}\right) / h_{t} \geq \sqrt{(q-1) / q}$ a.s. for any $q>1$, then $\lim \sup _{t \rightarrow \infty} X_{t} / h_{t} \geq 1$ a.s..

Proof. (a.s.) $\limsup _{t \rightarrow \infty}\left(-X_{t / q}\right) / h_{t} \leq \lim _{t \rightarrow \infty} h_{t / q} / h_{t}=1 / \sqrt{q}$, so $\lim \sup _{t \rightarrow \infty} X_{t} / h_{t} \geq(\sqrt{q-1}-1) / \sqrt{q}$, where $(\sqrt{q-1}-1) / \sqrt{q} \rightarrow 1$ as $q \rightarrow \infty$.

3 Martingales

See https://zhuanlan.zhihu.com/p/76804737 for a fast-paced review, whose pdf version is available; see comments therein.

3.1 Switch at a stopping time

1. Let $X=\left(X_{t}\right)_{t \geq 0}$ and $Y=\left(Y_{t}\right)_{t \geq 0}$ be supermartingales with respect to a filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$. Suppose τ is a stopping time such that $X_{\tau} \leq Y_{\tau}$. Define $Z_{t}=X_{t} \mathbb{1}_{\{\tau \leq t\}}+Y_{t} \mathbb{1}_{\{\tau>t\}}$ and $W_{t}=X_{t} \mathbb{1}_{\{\tau<t\}}+Y_{t} \mathbb{1}_{\{\tau \geq t\}}$. Then $Z=\left(Z_{t}\right)_{t \geq 0}$ and $W=\left(W_{t}\right)_{t \geq 0}$ are also an $\left(\mathscr{F}_{t}\right)_{t \geq 0}$-supermartingales.

Proof. Write $\Delta^{-} X_{t}=X_{t}-X_{t-}$ and $\Delta^{+} X_{t}=X_{t+}-X_{t}$. It can be seen that

$$
\begin{gathered}
\left\{\begin{array}{l}
\Delta^{-} Z_{t}=\Delta^{-} X_{t} \mathbb{1}_{\{\tau<t\}}+\Delta^{-} Y_{t} \mathbb{1}_{\{\tau \geq t\}}+\left(X_{\tau}-Y_{\tau}\right) \mathbb{1}_{\{\tau=t\}} \\
\Delta^{+} W_{t}=\Delta^{+} X_{t} \mathbb{1}_{\{\tau \leq t\}}+\Delta^{+} Y_{t} \mathbb{1}_{\{\tau>t\}}+\left(X_{\tau}-Y_{\tau}\right) \mathbb{1}_{\{\tau=t\}}
\end{array},\right. \\
\text { so }\left\{\begin{aligned}
\mathbb{E}\left[\Delta^{-} Z_{t} \mid \mathscr{F}_{t-}\right] & =\mathbb{E}\left[\Delta^{-} X_{t} \mid \mathscr{F}_{t-}\right] \mathbb{1}_{\{\tau<t\}}+\mathbb{E}\left[\Delta^{-} Y_{t} \mid \mathscr{F}_{t-}\right] \mathbb{1}_{\{\tau \geq t\}}+\mathbb{E}\left[\left(X_{\tau}-Y_{\tau}\right) \mathbb{1}_{\{\tau=t\}} \mid \mathscr{F}_{t-}\right] \leq 0 \\
\mathbb{E}\left[\Delta^{+} W_{t} \mid \mathscr{F}_{t}\right] & =\mathbb{E}\left[\Delta^{+} X_{t} \mid \mathscr{F}_{t}\right] \mathbb{1}_{\{\tau \leq t\}}+\mathbb{E}\left[\Delta^{+} Y_{t} \mid \mathscr{F}_{t}\right] \mathbb{1}_{\{\tau>t\}}+\mathbb{E}\left[\left(X_{\tau}-Y_{\tau}\right) \mathbb{1}_{\{\tau=t\}} \mid \mathscr{F}_{t}\right] \leq 0
\end{aligned}\right.
\end{gathered}
$$

2. (Dubins) Let $X=\left(X_{t}\right)_{t \geq 0}$ be a positive supermartingale with respect to a filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$. Denote by $U^{a, b}$ the number of upcrossings through $[a, b]$ made by $t \mapsto X_{t}$. Then $\mathbb{P}\left\{U^{a, b} \geq k\right\} \leq(a / b)^{k} \mathbb{E} \min \left\{X_{0} / a, 1\right\}$.

Proof. Let $\tau_{0}=0$ and $\left\{\begin{array}{l}\sigma_{j}=\inf \left\{t \geq \tau_{j-1}: X_{t} \leq a\right\} \\ \tau_{j}=\inf \left\{t \geq \sigma_{j}: X_{t} \geq b\right\}\end{array}\right.$ for $j=1,2, \cdots$. Define $W^{(0)}=\min \{X / a, 1\}$ and recursively $\left\{\begin{array}{l}Z_{t}^{(j)}=W_{t}^{(j-1)} \mathbb{1}_{\left\{t<\sigma_{j}\right\}}+(b / a)^{j-1}\left(X_{t} / a\right) \mathbb{1}_{\left\{t \geq \sigma_{j}\right\}} \\ W_{t}^{(j)}=Z_{t}^{(j)} \mathbb{1}_{\left\{t \leq \tau_{j}\right\}}+(b / a)^{j} \mathbb{1}_{\left\{t>\tau_{j}\right\}}\end{array} \quad\right.$ so that by 1 they are supermartingales with respect to $\mathscr{F}_{t}=\sigma\left(X_{s}: s \leq t\right)$. In order to bound $\mathbb{P}\left\{U^{a, b} \geq k\right\}=\mathbb{P}\left\{\tau_{k}<\infty\right\}=\lim _{t \rightarrow \infty} \mathbb{P}\left\{\tau_{k}<t\right\}$, note that $(b / a)^{k} \mathbb{P}\left\{\tau_{k}<t\right\} \leq \mathbb{E} W_{t}^{(k)} \leq \mathbb{E} W_{0}^{(k)}=\mathbb{E} W_{0}^{(0)}$.
3. (Random walk) Let $S_{n}=\sum_{i=1}^{n} \varepsilon_{i}$ with ε_{i} 's taking values in $\{ \pm 1\}$. For any $s=\left(s_{n}\right)_{n \geq 0}$, define $\tau_{k}(s)=$ $\inf \left\{n: s_{n}=k\right\}$ and $\Theta_{k}(s)=\left(s_{n} \mathbb{1}_{\left[n \leq \tau_{k}(s)\right]}+\left(2 k-s_{n}\right) \mathbb{1}_{\left[n>\tau_{k}(s)\right]}\right)_{n \geq 0}$. If S satisfies the reflection principle that $\Theta_{k}(S) \stackrel{d}{=} S$ for $k=0,1,2, \cdots$, then S is a symmetric simple random walk.

Proof. It suffices that $S_{0: n}=\left(S_{0}, S_{1}, \ldots, S_{n}\right)$ is uniformly distributed on $\Lambda^{n}=\left\{s_{0: n}=\left(s_{0}, s_{1}, \ldots, s_{n}\right)\right.$: $\left.s_{0}=0, s_{i}-s_{i-1}= \pm 1(\forall i)\right\}$. Let s be a possible path with $s_{0: n}$ as its first $(n+1)$ elements. There exist $k_{1}<\cdots<k_{m}$ such that $\Theta_{(s)}=\Theta_{k_{m}} \circ \cdots \circ \Theta_{k_{1}}$ transforms s to have $(0,1, \cdots, n)$ as its first $(n+1)$ elements. Then $\Theta_{(s)}(S) \stackrel{d}{=} S$, so $\mathbb{P}\left\{S_{0: n}=s_{0: n}\right\}=\mathbb{P}\left\{\Theta_{(s)}(S)_{0: n}=\Theta_{(s)}(s)_{0: n}\right\}=\mathbb{P}\left\{S_{0: n}=(0,1, \cdots, n)\right\}$.
4. (Converse of optional stopping theorem) Let $M=\left(M_{t}\right)_{t \geq 0}$ be an integrable stochastic process adapted to a filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$. Then M is a martingale if $\mathbb{E} M_{\tau}=\mathbb{E} M_{0}$ for every bounded stopping time τ.

Proof. Let $s<t$. If $A \in \mathscr{F}_{s}$, then $\tau=s \mathbb{1}_{A}+t \mathbb{1}_{A^{\mathrm{C}}}$ is a stopping time. Thus,

$$
0=\mathbb{E} M_{t}-\mathbb{E} M_{\tau}=\mathbb{E}\left[M_{t}-M_{s} ; A\right] .
$$

Since A is arbitrary, we conclude that $\mathbb{E}\left[M_{t} \mid \mathscr{F}_{s}\right]=M_{s}$.

3.2 Optimal stopping with finite horizon

Let $Y=\left(Y_{n}\right)_{n=0,1, \cdots, N}$ be an integrable stochastic process adapted to a filtration $\left(\mathscr{F}_{n}\right)_{n=0,1, \cdots, N}$. Then the Snell envelope $U=\left(U_{n}\right)_{n=0,1, \cdots, N}$ is recursively defined by $U_{N}=Y_{N}$ and $U_{n}=Y_{n} \vee \mathbb{E}\left[U_{n+1} \mid \mathscr{F}_{n}\right]$ for $n<N$. Denote by $\mathcal{S}_{t_{0}}^{t_{1}}$ the set of stopping times τ with $t_{0} \leq \tau \leq t_{1}$.

1. U is a supermartingale and $U_{n} \leq X_{n}$ for all n if X is a supermartingale such that $X_{n} \geq Y_{n}$ for all n.

Proof. First, $X_{N} \geq Y_{N}=U_{N}$. If $X_{n+1} \geq U_{n+1}$, then $X_{n} \geq \mathbb{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right] \geq \mathbb{E}\left[U_{n+1} \mid \mathscr{F}_{n}\right]$, so $X_{n} \geq U_{n}$.
2. (Value function) $\sup _{\tau \in \mathcal{S}_{n}^{N}} \mathbb{E}\left[Y_{\tau} \mid \mathscr{F}_{n}\right]=U_{n}=\mathbb{E}\left[Y_{\tau_{n}} \mid \mathscr{F}_{n}\right]$, where $\tau_{n}=\inf \left\{t \geq n: Y_{t}=U_{t}\right\}$. Consequently, (Bellman equation) $\sup _{\tau \in \mathcal{S}_{n}^{N}} \mathbb{E}\left[Y_{\tau} \mid \mathscr{F}_{n}\right]=Y_{n} \vee \mathbb{E}\left[\sup _{\tau \in \mathcal{S}_{n+1}^{N}} \mathbb{E}\left[Y_{\tau} \mid \mathscr{F}_{n+1}\right] \mid \mathscr{F}_{n}\right]$ for $n<N$.

Proof. The statement is trivial for $n=N$. We proceed backwards inductively. If $\tau \in \mathcal{S}_{n-1}^{N}$, then $\tau \vee n \in \mathcal{S}_{n}^{N}$ and thus $\mathbb{E}\left[Y_{\tau \vee n} \mid \mathscr{F}_{n}\right] \leq U_{n}$. For $Y_{\tau}=Y_{n-1} \mathbb{1}_{\{\tau=n-1\}}+Y_{\tau \vee n} \mathbb{1}_{\{\tau \geq n\}}$, we have

$$
\mathbb{E}\left[Y_{\tau} \mid \mathscr{F}_{n-1}\right]=Y_{n-1} \mathbb{1}_{\{\tau=n-1\}}+\mathbb{E}\left[Y_{\tau \vee n} \mid \mathscr{F}_{n-1}\right] \mathbb{1}_{\{\tau \geq n\}} \leq U_{n-1} \mathbb{1}_{\{\tau=n-1\}}+\mathbb{E}\left[U_{n} \mid \mathscr{F}_{n-1}\right] \mathbb{1}_{\{\tau \geq n\}} \leq U_{n-1},
$$

with equality holding when $\tau=\tau_{n-1}$, since $Y_{\tau_{n-1}}=U_{n-1} \mathbb{1}_{\left\{\tau_{n-1}=n-1\right\}}+Y_{\tau_{n}} \mathbb{1}_{\left\{\tau_{n-1} \geq n\right\}}$.
Particularly, $\mathbb{E} Y_{\tau}=\mathbb{E}\left\{\mathbb{E}\left[Y_{\tau} \mid \mathscr{F}_{0}\right]\right\} \leq \mathbb{E} U_{0}=\mathbb{E} Y_{\tau_{0}}$ for any $\tau \in \mathcal{S}_{0}^{N}$, and thus $\tau_{0}=\arg \max _{\tau \in \mathcal{S}_{0}^{N}} \mathbb{E} Y_{\tau}$.
Besides, the stopped supermartingale $U^{\tau_{0}}=\left(U_{n \wedge \tau_{0}}\right)_{n=0,1, \cdots, N}$ is actually a martingale, since $U_{\tau_{0}}=Y_{\tau_{0}}$.
3. (Cayley-Moser) Suppose that Y_{n} 's are i.i.d. copies of Y and $\mathscr{F}_{n}=\sigma\left(Y_{0}, Y_{1}, \ldots, Y_{n}\right)$. Then $\mathbb{E}\left[U_{n+1} \mid \mathscr{F}_{n}\right]=$ A_{N-n} is a constant that depends only on $N-n$. Moreover,
(a) $A_{n}=\log (n+O(\log n))$ if $Y \sim \operatorname{Exponential}(1)$.
(b) $A_{n}=1-2 /[n+\log (n)+O(1)]$ if $Y \sim \operatorname{Uniform}(0,1)$.

Proof. Put $A_{0}=-\infty$. By induction, $\mathbb{E}\left[U_{n} \mid \mathscr{F}_{n-1}\right]=\mathbb{E}\left[Y_{n} \vee A_{N-n} \mid \mathscr{F}_{n-1}\right]=\mathbb{E}\left[Y \vee A_{N-n}\right]$ since $Y_{n} \Perp \mathscr{F}_{n-1}$. This also leads to the recursion formula $A_{n+1}=\mathbb{E}\left[Y \vee A_{n}\right]$, starting from $A_{1}=\mathbb{E} Y$.
(a) Now $A_{n+1}=A_{n}+\mathrm{e}^{-A_{n}}$. Write $A_{n}=\log \left(n+x_{n}\right)$, then

$$
\frac{1}{n+x_{n}}=\mathrm{e}^{-A_{n}}=A_{n+1}-A_{n}=\log \left(1+\frac{1+x_{n+1}-x_{n}}{n+x_{n}}\right)
$$

Using $\frac{u}{1+u} \leq \log (1+u) \leq u$, we obtain that $0 \leq x_{n+1}-x_{n} \leq \frac{1}{n+x_{n}-1} \lesssim \frac{1}{n}$.
(b) Now $A_{n+1}=\left(A_{n}^{2}+1\right) / 2$. Write $A_{n}=1-2 /\left(n+x_{n}\right)$, then some calculation gives $x_{n+1}-x_{n}=\frac{1}{n+x_{n}-1}$, so $x_{n} \leq \log (n)+O(1)$. It follows that $x_{n}-\log (n)-O(1) \geq \sum_{k=1}^{n}\left(\frac{1}{k+\log k}-\frac{1}{k}\right) \geq-\sum_{k=1}^{\infty} \frac{\log k}{k^{2}}$.

3.3 Martingales derived from differentiation

Let $M(\theta)=\left(M_{t}(\theta)\right)_{t \geq 0}$ be a martingale with respect to a filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$, for any θ in a neighborhood of 0 . If $M_{t}^{(n)}(\theta)=\frac{\partial^{n}}{\partial \theta^{n}} M_{t}(\theta)$ exists and $\mathbb{E} \sup _{\theta}\left|M_{t}^{(n)}(\theta)\right|<\infty$ for all t, then $\left(M_{t}^{(n)}(0)\right)_{t \geq 0}$ is a martingale.
Proof. For $s<t$, we have $\mathbb{E}\left[\left.\left.\frac{\partial^{n}}{\partial \theta^{n}}\right|_{0} M_{t}(\theta) \right\rvert\, \mathscr{F}_{s}\right]=\left.\frac{\partial^{n}}{\partial \theta^{n}}\right|_{0} \mathbb{E}\left[M_{t}(\theta) \mid \mathscr{F}_{s}\right]$ by the dominated convergence.
E.g., the exponential martingale of a Brownian motion is associated with Hermite polynomials.

3.4 Strong law of large numbers

Let X, X_{1}, X_{2}, \ldots be i.i.d. and $S_{n}=\sum_{i=1}^{n} X_{i}$.

1. (Convergence rate) If $\mathbb{E} X^{2}<\infty$, then $\left(S_{n}-n \mathbb{E} X\right) / a_{n} \xrightarrow{\text { a.s. }} 0$ for $a_{n}=n^{1 / 2}(\log n)^{1 / 2+\epsilon}$ with $\epsilon>0$.

Proof. Let $M_{n}=\sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X\right) / a_{i}$, which is an L^{2}-martingale adapted to $\mathscr{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Using the fact that $\sup \mathbb{E} M_{n}^{2}=\operatorname{Var}(X) \sup \sum_{i=1}^{n} 1 / a_{i}^{2}<\infty$, we obtain the a.s. convergence of M_{n}. The proof is completed by applying Kronecker's lemma.
2. (Moment convergence) If $\mathbb{E}|X|^{p}<\infty$ for some $p \in[1, \infty)$, then $\bar{X}_{n} \xrightarrow{L^{p}} \mathbb{E} X$ where $\bar{X}_{n}=S_{n} / n$.

Proof. Let $\mathscr{F}_{-n}=\sigma\left(\bar{X}_{n}, X_{n+1}, X_{n+2}, \ldots\right)$, then $\bar{X}_{n}=\mathbb{E}\left[X_{1} \mid \mathscr{F}_{-n}\right] \xrightarrow{\text { a.s. }} \mathbb{E} X$. By Vitali's convergence theorem, it suffices that $\left\{\left|\bar{X}_{n}\right|^{p}\right\}_{n \geq 1}$ is uniformly integrable, but $\left|\bar{X}_{n}\right|^{p} \leq \mathbb{E}\left[\left|X_{1}\right|^{p} \mid \mathscr{F}_{-n}\right]$.

4 Markov chains

Suppose throughout this section that $X=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ is a homogeneous Markov chain with transition probabilities $\mathbb{P}\left(X_{n}=y \mid X_{0}=x\right)=p^{n}(x, y)$ for states x, y. Denote $\mathbb{P}_{x}=\mathbb{P}\left(\cdot \mid X_{0}=x\right)$ and $\mathbb{E}_{x}=\mathbb{E}\left[\cdot \mid X_{0}=x\right]$.

4.1 First passage decomposition

Let $T_{x}=\inf \left\{n \geq 1: X_{n}=x\right\}$ and $f^{n}(x, y)=\mathbb{P}_{x}\left\{T_{y}=n\right\}$.

1. $p^{n}(x, y)=\sum_{m=1}^{n} f^{m}(x, y) p^{n-m}(y, y)$ for $n \geq 1$. In other words,
$P_{x y}(s)=\mathbb{1}_{[x=y]}+F_{x y}(s) P_{y y}(s)$, where $P_{x y}(s)=\sum_{n=0}^{\infty} p^{n}(x, y) s^{n}$ and $F_{x y}(s)=\sum_{n=0}^{\infty} f^{n}(x, y) s^{n}$.
Proof. $\left\{X_{n}=y\right\}=\bigcup_{m=1}^{n}\left\{T_{y}=m, X_{n}=y\right\}$ and $\mathbb{P}_{x}\left(X_{n}=\cdot \mid T_{y}=m\right)=p^{n-m}(y, \cdot)$.
2. $\mathbb{P}_{x}\left\{T_{x}<\infty\right\}=1-1 / G(x, x)$ where $G(x, x)=\sum_{n=0}^{\infty} p^{n}(x, x)$. Hence, $T_{x}<\infty \mathbb{P}_{x}$-a.s. $\Longleftrightarrow G(x, x)=\infty$.

Proof. Let $s \nearrow 1$ in $F_{x x}(s)=1-1 / P_{x x}(s)$.
3. $\sum_{n=0}^{N} p^{n}(x, x) \geq \sum_{n=k}^{N+k} p^{n}(x, x), \forall k \geq 1$.

Proof. Let $T=\inf \left\{n \geq k: X_{n}=x\right\}$, then $p^{n}(x, x)=\sum_{m=k}^{n} \mathbb{P}_{x}\{T=m\} p^{n-m}(x, x)$ for $n \geq k$. It follows that $\sum_{n=k}^{N+k} p^{n}(x, x)=\sum_{n=k}^{N+k} \sum_{m=k}^{n} \mathbb{P}_{x}\{T=m\} p^{n-m}(x, x)=\sum_{m=k}^{N+k} \mathbb{P}_{x}\{T=m\} \sum_{n=m}^{N+k} p^{n-m}(x, x)$, where $\sum_{n=m}^{N+k} p^{n-m}(x, x) \leq \sum_{n=0}^{N} p^{n}(x, x)$ and $\sum_{m=k}^{N+k} \mathbb{P}_{x}\{T=m\} \leq 1$.

4.2 Number of visits

Let $V_{n}(x)=\sum_{m=1}^{n} \mathbb{1}_{\left\{X_{m}=x\right\}}$ and $T_{x}^{(k)}=\inf \left\{n>T_{x}^{(k-1)}: X_{n}=x\right\}$, where $T_{x}^{(1)}=T_{x}=\inf \left\{n>0: X_{n}=x\right\}$. Clearly $V_{n}(x)=\sum_{k=1}^{\infty} \mathbb{1}_{\left\{T_{x}^{(k)} \leq n\right\}}$. Assume that X is irreducible and recurrent, so $\mathbb{P}_{x}\left\{T_{y}<\infty\right\}=1, \forall x, y$.

1. $\mathbb{E}_{x} V_{T_{x}}(y)=\frac{\mathbb{P}_{x}\left\{T_{y}<T_{x}\right\}}{\mathbb{P}_{y}\left\{T_{x}<T_{y}\right\}}$ for $x \neq y$.

Proof. $\mathbb{E}_{x} V_{T_{x}}(y)=\sum_{k=1}^{\infty} \mathbb{P}_{x}\left\{T_{y}^{(k)}<T_{x}\right\}=\sum_{k=1}^{\infty} \mathbb{P}_{x}\left\{T_{y}<T_{x}\right\} \prod_{j=1}^{k-1} \mathbb{P}_{x}\left(T_{y}^{(j+1)}<T_{x} \mid T_{y}^{(j)}<T_{x}\right)$ where $\mathbb{P}_{x}\left(T_{y}^{(j+1)}<T_{x} \mid T_{y}^{(j)}<T_{x}\right)=\mathbb{P}_{y}\left\{T_{y}<T_{x}\right\}$ due to the strong Markov property.
2. $\mathbb{E}_{x} V_{T_{x}}(y) \mathbb{E}_{y} V_{T_{y}}(z)=\mathbb{E}_{x} V_{T_{x}}(z)$.

Proof. Since the stationary distribution is unique up to constant multiples, $\mathbb{E}_{x} V_{T_{x}}(\cdot) \propto \mathbb{E}_{y} V_{T_{y}}(\cdot)$.
3. $\frac{V_{n}(y)}{V_{n}(z)} \xrightarrow{\mathbb{P} \text {-a.s. }} \frac{1}{\mathbb{E}_{y} V_{T_{y}}(z)}=\frac{\mathbb{E}_{x} V_{T_{x}}(y)}{\mathbb{E}_{x} V_{T_{x}}(z)}$, and thus $\frac{n}{V_{n}(z)}=\sum_{y} \frac{V_{n}(y)}{V_{n}(z)} \xrightarrow{\mathbb{P} \text {-a.s. }} \sum_{y} \frac{\mathbb{E}_{x} V_{T_{x}}(y)}{\mathbb{E}_{x} V_{T_{x}}(z)}=\frac{\mathbb{E}_{x} T_{x}}{\mathbb{E}_{x} V_{T_{x}}(z)}=\mathbb{E}_{z} T_{z}$.

Proof. If $T_{y}^{(k)} \leq n<T_{y}^{(k+1)}$, then $\frac{k}{k+1} \cdot \frac{k+1}{V_{T_{y}(k+1)}(z)} \leq \frac{V_{n}(y)}{V_{n}(z)} \leq \frac{k}{V_{T_{y}(k)}(z)}$. To conclude, it suffices that $\frac{V_{T_{y}(k)}(z)}{k}=\frac{1}{k}\left[V_{T_{y}}(z)+\sum_{j=1}^{k-1}\left(V_{T_{y}^{(j+1)}}(z)-V_{T_{y}^{(j)}}(z)\right)\right] \xrightarrow{\text { a.s. }} \mathbb{E}_{y} V_{T_{y}}(z)$ by the strong law of large numbers.
4. $\quad \frac{\mathbb{E}_{x} V_{n}(y)}{\mathbb{E}_{x} V_{n}(z)} \rightarrow \frac{1}{\mathbb{E}_{y} V_{T_{y}}(z)}=\frac{\mathbb{E}_{x} V_{T_{x}}(y)}{\mathbb{E}_{x} V_{T_{x}}(z)}$.

Proof. Let $L_{y}^{(n)}=\max \left\{m \leq n: X_{m}=y\right\} \mathbb{1}_{\left\{T_{y} \leq n\right\}}$. Then the last exit decomposition gives

$$
\begin{aligned}
\mathbb{E}_{x} V_{n}(z) & =\sum_{m=1}^{n} \mathbb{P}_{x}\left\{X_{m}=z\right\}=\sum_{m=1}^{n} p^{m}(x, z) \\
& =\sum_{m=1}^{n} \mathbb{P}_{x}\left\{X_{m}=z, T_{y}>m\right\}+\sum_{m=1}^{n} \sum_{\ell=1}^{m} \mathbb{P}_{x}\left\{X_{m}=z, L_{y}^{(m)}=\ell\right\} \\
& =\sum_{m=1}^{n} p_{\backslash y}^{m}(x, z)+\sum_{\ell=1}^{n} \sum_{m=\ell}^{n} p^{\ell}(x, y) p_{\backslash y}^{m-\ell}(y, z),
\end{aligned}
$$

where $p_{\backslash y}^{m}(x, z)=\mathbb{P}_{x}\left\{X_{m}=z, T_{y}>m\right\}$. Since $\mathbb{E}_{x} V_{n}(y) \nearrow \infty$ and $\sum_{m=1}^{\infty} p_{\backslash y}^{m}(x, z)=\mathbb{E}_{x} V_{T_{y}}(z)-\mathbb{1}_{[y=z]}$, we obtain that $\frac{\mathbb{E}_{x} V_{n}(z)}{\mathbb{E}_{x} V_{n}(y)} \rightarrow \sum_{m=\ell}^{\infty} p_{\backslash y}^{m-\ell}(y, z)=\mathbb{1}_{[y=z]}+\mathbb{E}_{y} V_{T_{y}}(z)-\mathbb{1}_{[y=z]}=\mathbb{E}_{y} V_{T_{y}}(z)$.

4.3 Superharmonicity and recurrence

A function f is said to be superharmonic if $f(x) \geq \sum_{y} p^{1}(x, y) f(y)$ for all x, and to be harmonic if there are only equalities. Suppose that X is irreducible.

1. $x \mapsto \mathbb{P}_{x}\left\{T_{A}<\infty\right\}$ is superharmonic, where $T_{A}=\inf \left\{n \geq 1: X_{n} \in A\right\}$ for A a subset of the state space.

Proof. By the one-step forward analysis, $\mathbb{P}_{x}\left\{T_{A}<\infty\right\}=\sum_{y \in A} p^{1}(x, y)+\sum_{y \notin A} p^{1}(x, y) \mathbb{P}_{y}\left\{T_{A}<\infty\right\}$.
2. X is recurrent if and only if every bounded superharmonic function is constant.

Proof. Let f be a bounded superharmonic function so that $Y_{n}=f\left(X_{n}\right)$ is a bounded supermartingale converging a.s. to some Y_{∞}. If X is recurrent, then for any x we have a.s. $X_{n}=x$ i.o., and thus $Y_{\infty} \stackrel{\text { a.s. }}{=} f(x)$, which forces f to be constant. Conversely, if X is transient, then take $f(x)=G(x, z)=\sum_{n=0}^{\infty} p^{n}(x, z)$ for a fixed z. We have $\sum_{y} p^{1}(x, y) f(y)=f(x)-\mathbb{1}_{[x=z]}$, so f is a nonconstant superharmonic function. Note that $f \leq G(z, z)<\infty$. As an alternative, one may consider $f(x)=\mathbb{P}_{x}\left\{T_{\{z\}}<\infty\right\}$ for a fixed z.
3. (birth-and-death) Let the state space be \mathbb{N}, and $p^{1}(x, y)=b_{x} \mathbb{1}_{[y=x+1]}+d_{x} \mathbb{1}_{[y=x-1]}$ where $b_{x}+d_{x}=1$ and $d_{0}=0$. Then X is recurrent if and only if $\sum_{x=0}^{\infty} \prod_{y=1}^{x} \frac{d_{y}}{b_{y}}=\infty$.

Proof. Let $h(x)=\mathbb{P}_{x}\left\{T_{\{0\}}<\infty\right\}$. We have $h(0)=h(1)=b_{1} h(2)+d_{1}$ and $h(x)=b_{x} h(x+1)+d_{x} h(x-1)$ for $x>1$, which can be written as $h(x)-h(x+1)=\frac{d_{x}}{b_{x}}(h(x-1)-h(x))$. Then it's easily seen that $1-h(x)=(1-h(1)) g(x)$, where $g(0)=1$ and $g(x)=\sum_{z=0}^{x-1} \prod_{y=1}^{z} \frac{d_{y}}{b_{y}}$ for $x \geq 1$. If $g(\infty)=\infty$, then the boundedness of h entails that $h(1)=1$, in which case X is recurrent. Conversely, if $g(\infty)<\infty$, then the superharmonic function $g(\infty)-g$ is not constant, so X is transient.

Second Proof. Note that $\tilde{g}\left(X_{n \wedge \tau}\right)$ is a martingale, where $\tilde{g}=g \mathbb{1}_{\{0\}}{ }^{\mathrm{c}}$ and $\tau=\inf \left\{n: X_{n} \in\{0, M\}\right\}$ for some $M \in \mathbb{N}$. One can apply the optional stopping theorem to obtain that $\mathbb{P}_{x}\left\{T_{\{0\}}>T_{\{M\}}\right\}=g(x) / g(M)$ if $0<x<M$. Letting $M \rightarrow \infty$ gives $\mathbb{P}_{x}\left\{T_{\{0\}}=\infty\right\}=g(x) / g(\infty)$.

4.4 Green's function - potential theory

Suppose that X is irreducible. Let $G_{A}(x, y)=\mathbb{E}_{x} \sum_{n=0}^{\epsilon_{A}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}$, where A is a subset of the state space S, and $\epsilon_{A}=\inf \left\{n: X_{n} \notin A\right\}$. In particular, $G_{S}(x, y)=G(x, y)=\sum_{n=0}^{\infty} p^{n}(x, y)$. Write $\mathrm{P} f=\sum_{y} p^{1}(\cdot, y) f(y)$ for a function f on S which is either bounded or nonnegative. Note that $\mathrm{P}^{n} f=\sum_{y} p^{n}(\cdot, y) f(y)=\left(x \mapsto \mathbb{E}_{x} f\left(X_{n}\right)\right)$.

1. Assume that X is recurrent and $0<\# A<\# S$.
(a) $G_{A}(x, y)<\infty, \forall x, y \in S$.

Proof. Note that $G_{A}(x, y)=0$ if $x \in A^{\complement}$ or $(x, y) \in A \times A^{\complement}$. For $x, y \in A$, we have $G_{A}(x, y) \leq \mathbb{E}_{x} \epsilon_{A}$. Since $\mathbb{P}_{x}\left\{\epsilon_{A}>n_{x}\right\}<1$ for some $n_{x} \in \mathbb{N}$ by the recurrence, we have

$$
\mathbb{P}\left(\epsilon_{A}>n_{A} \mid X_{0} \in A\right) \leq \max _{x \in A} \mathbb{P}_{x}\left\{\epsilon_{A}>n_{A}\right\} \leq \max _{x \in A} \mathbb{P}_{x}\left\{\epsilon_{A}>n_{x}\right\}=a<1
$$

for $n_{A}=\max _{x \in A} n_{x}$, and thus $\mathbb{P}_{x}\left\{\epsilon_{A}>k n_{A}\right\}=\prod_{j=1}^{k} \mathbb{P}_{x}\left(\epsilon_{A}>j n_{A} \mid \epsilon_{A}>(j-1) n_{A}\right) \leq a^{k}$ for every $k \in \mathbb{N}$, which implies that $\mathbb{E}_{x} \epsilon_{A} \lesssim n_{A} \sum a^{k}<\infty$.
(b) $(1-\mathrm{P}) G_{A}(\cdot, y)=\mathbb{1}_{\{y\}}$ on A, for any $y \in A$.

Proof. For any $x \in A$, we have

$$
G_{A}(x, y)-\mathbb{1}_{\{y\}}(x)=\sum_{z \in A} \mathbb{E}_{x} \sum_{n=1}^{\epsilon_{A}-1} \mathbb{1}_{\left\{X_{1}=z, X_{n}=y\right\}}=\sum_{z \in A} p^{1}(x, z) G_{A}(z, y)
$$

by the strong Markov property, but $G_{A}(z, y)=0$ for $z \notin A$.
(c) For any function ϱ on A, the Poisson equation $\left\{\begin{aligned}(1-\mathrm{P}) \psi & =\varrho \text { on } A \\ \psi & =0 \text { on } A^{\complement}\end{aligned} \quad\right.$ has a unique solution ψ given by $\sum_{y \in A} G_{A}(\cdot, y) \varrho(y)$, as G_{A} is the fundamental solution suggested by 1 b .

Proof. It remains to show the uniqueness. If ψ is a solution to the Poisson equation, then for any $x \in A$,

$$
\begin{aligned}
\sum_{y \in A} G_{A}(x, y) \varrho(y) & =\sum_{y \in A} G_{A}(x, y)\left(\psi(y)-\sum_{z \in A} p^{1}(y, z) \psi(z)\right) \\
& =\sum_{z \in A} \psi(z) \sum_{y \in A} G_{A}(x, y)\left(\mathbb{1}_{[y=z]}-p^{1}(y, z)\right) \\
& =\sum_{z \in A} \psi(z) \mathbb{1}_{[x=z]}=\psi(x)
\end{aligned}
$$

since $G_{A}(x, z)-\mathbb{1}_{[x=z]}=\sum_{y \in A} \mathbb{E}_{x} \sum_{n=1}^{\epsilon_{A}-1} \mathbb{1}_{\left\{X_{n-1}=y, X_{n}=z\right\}}=\sum_{y \in A} G_{A}(x, y) p^{1}(y, z)$.
2. Assume here that X is transient, whence $G(x, y)<\infty, \forall x, y \in S$.
(a) $\mathrm{P}^{n} G(\cdot, y)(x) \rightarrow 0$ as $n \rightarrow \infty, \forall x, y \in S$.

Proof. Proceeding the same way as in 1 b , we have $(1-\mathrm{P}) G(\cdot, y)=\mathbb{1}_{\{y\}}$, so

$$
\mathrm{P}^{n} G(\cdot, y)(x)-\mathrm{P}^{n+1} G(\cdot, y)(x)=\mathrm{P}^{n} \mathbb{1}_{\{y\}}(x)=\mathbb{E}_{x} \mathbb{1}_{\{y\}}\left(X_{n}\right)=p^{n}(x, y)
$$

Therefore, $\mathrm{P}^{n} G(\cdot, y)(x)=G(x, y)-\sum_{k=0}^{n-1}\left(\mathrm{P}^{k} G(\cdot, y)(x)-\mathrm{P}^{k+1} G(\cdot, y)(x)\right)=\sum_{k=n}^{\infty} p^{k}(x, y) \rightarrow 0$.
(b) (Riesz) Let $f: S \rightarrow \mathbb{R}_{+}$be superharmonic in that $f \geq \mathrm{P} f$. Then $h=\lim _{n \rightarrow \infty} \mathrm{P}^{n} f$ exists pointwise and is harmonic, and $f(x)=h(x)+\sum_{y} G(x, y) q(y)$ for all x, where $q=f-\mathrm{P} f$ represents charges.

Proof. The sequence $f \geq \mathrm{P} f \geq \mathrm{P}^{2} f \geq \cdots \geq \mathrm{P}^{n} f \geq \cdots \geq 0$ admits a P -invariant limit. Next, notice that $f-\mathrm{P}^{n} f=\sum_{k=0}^{n-1} \mathrm{P}^{k} q=\sum_{k=0}^{n-1} \sum_{y} p^{k}(\cdot, y) q(y) \nearrow \sum_{y} G(\cdot, y) q(y)$.

5 Stationary sequences

Recall that a measurable transformation T on a measure space (S, \mathscr{S}, μ) is said to preserve μ if $\mu \circ T^{-1}=\mu$, and to be ergodic for μ if all T-invariant sets are μ-trivial, i.e., $\mu(I) \mu\left(I^{\complement}\right)=0$ for any $I \in \mathscr{S}$ such that $T^{-1}(I)=I$. A sequence $\xi=\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)$ of random variables is said to be stationary if θ preserves $\mathbb{P} \circ \xi^{-1}$, and to be ergodic if θ is ergodic for $\mathbb{P} \circ \xi^{-1}$, where $\theta:\left(x_{0}, x_{1}, \ldots\right) \mapsto\left(x_{1}, x_{2}, \ldots\right)$ is the shift operator. We are primarily interested in the case $\xi_{n}=X \circ \varphi^{\circ n}$ for some transformation φ on $(\Omega, \mathscr{F}, \mathbb{P})$ that is \mathbb{P}-preserving and \mathbb{P}-ergodic.

5.1 Invariant sets and functions

Let T be a transformation on (S, \mathscr{S}, μ) which is measure-preserving. Suppose that μ is complete.

1. (σ-algebras) $\mathscr{I}_{T}^{\mu}=\left\{A \in \mathscr{S}: \mu\left(T^{-1}(A) \Delta A\right)=0\right\}$ is the completion of $\mathscr{I}_{T}=\left\{I \in \mathscr{S}: T^{-1}(I)=I\right\}$.

Proof. On one hand, for $A \in \mathscr{I}_{T}^{\mu}$ we have $C=\left\{T^{-n}(A)\right.$ i.o. $\} \in \mathscr{I}_{T}$ such that $\mu(A \Delta C)=0$. To see this, let $B=\bigcup_{n=0}^{\infty} T^{-n}(A)$. Then $\mu(A \Delta B) \leq \sum_{n=1}^{\infty} \mu\left(A \Delta T^{-n}(A)\right) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{n} \mu\left(T^{-(k-1)}(A) \Delta T^{-k}(A)\right)=0$, and $\mu(B \Delta C)=\sum_{n=1}^{\infty} \mu\left(T^{-(n-1)}(B) \backslash T^{-n}(B)\right)=\infty \cdot \mu\left(B \backslash T^{-1}(B)\right)$, where $B \backslash T^{-1}(B) \subset A \backslash T^{-1}(A)$ has measure zero. On the other hand, if $J \in \mathscr{S}$ satisfies that $\mu(J \Delta I)=0$ for some $I \in \mathscr{I}_{T}$, then $\mu\left(T^{-1}(J) \Delta J\right) \leq \mu\left(T^{-1}(J) \Delta T^{-1}(I)\right)+\mu(I \Delta J)=0$.
2. $f: S \rightarrow \mathbb{R}$ is \mathscr{I}_{T}^{μ}-measurable if and only if $f \circ T \stackrel{\text { a.e. }}{=} f$, and is \mathscr{I}_{T}-measurable if and only if $f \circ T=f$.

Proof. Denote $I_{a, b}=f^{-1}((a, b])=\{a<f \leq b\}$. Clearly $T^{-1}\left(I_{a, b}\right)=\{a<f \circ T \leq b\}$. Note that $\{f \circ T \neq f\}=\bigcup_{r \in \mathbb{Q}}(\{f \circ T<r<f\} \cup\{f<r<f \circ T\})$. Also, $f_{n}=2^{-n}\left\lfloor 2^{n} f\right\rfloor$ converges to f pointwise as $n \rightarrow \infty$, of which invariance can carry over to the limit.

5.2 Criteria for ergodicity

Let $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$ be a stationary sequence.

1. Let $\eta=\left(\eta_{1}, \eta_{2}, \ldots\right)$ where $\eta_{k}=g\left(\xi_{k}, \xi_{k+1}, \ldots\right)=g \circ \theta^{\circ(k-1)}(\xi)$ for some measurable function $g: \mathbb{R}^{\infty} \rightarrow \mathbb{R}$. Then η is also stationary. Moreover, if ξ is ergodic, then so is η.

Proof. Introduce $G=\left(g \circ \theta^{\circ(k-1)}\right)_{k=1,2, \ldots}$, which satisfies that $G \circ \theta=\theta \circ G$. We have $\xi \stackrel{d}{=} \theta(\xi)$, so $\eta=G(\xi) \stackrel{d}{=} G \circ \theta(\xi)=\theta(\eta)$. For any $J \in \mathscr{B}_{\mathbb{R}}^{\infty}$ such that $\theta^{-1}(J)=J$, called θ-invariant, $I=G^{-1}(J)$ is also θ-invariant, and thus $\mathbb{P}\{\eta \in J\}=\mathbb{P}\{\xi \in I\}$ should be either 0 or 1 as long as ξ is ergodic.
2. ξ is ergodic if and only if $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{B}\left(\xi_{i}, \ldots, \xi_{i+k-1}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \mathbb{P}\left\{\left(\xi_{1}, \ldots, \xi_{k}\right) \in B\right\}, \forall B \in \mathscr{B}_{\mathbb{R}}^{k}, \forall k=1,2, \cdots$.

Proof. Denote $\nu=\mathbb{P} \circ \xi^{-1}$. The stated property translates into $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{B \times \mathbb{R}^{\infty} \circ} \circ \theta^{\circ(i-1)} \xrightarrow{\nu \text {-a.s. }} \nu\left(B \times \mathbb{R}^{\infty}\right)$. In conjunction with Birkhoff's ergodic theorem, this yields $\mathbb{E}^{\nu}\left[\mathbb{1}_{B \times \mathbb{R}^{\infty}} \mid \mathscr{J}_{\theta}\right]=\mathbb{E}^{\nu} \mathbb{1}_{B \times \mathbb{R}^{\infty}}$, indicating that $B \times \mathbb{R}^{\infty}$ is independent of \mathscr{I}_{θ} under ν. The "only if" part is now trivial. As for the "if" part, notice that $\mathscr{I}_{\theta} \Perp \sigma\left(\bigcup_{k=1}^{\infty}\left\{B \times \mathbb{R}^{\infty}: B \in \mathscr{B}_{\mathbb{R}}^{k}\right\}\right)=\mathscr{B}_{\mathbb{R}}^{\infty} \supset \mathscr{I}_{\theta}$.

6 Brownian motion

6.1 Chaining and continuous modification of stochastic process

1. (Talagrand) Let $X=\left(X_{t}\right)_{t \in T}$ where T is a countable set equipped with a metric ρ such that

$$
\mathbb{P}\left\{\left|X_{t}-X_{s}\right|>\varepsilon\right\} \leq f(\varepsilon, \Delta), \quad \forall \varepsilon>0, \quad \forall t, s \in T: \rho(t, s) \leq \Delta .
$$

For any increasing sequence $\left\{T_{n}\right\}_{n=0}^{\infty}$ of subsets of T with $\bigcup T_{n}=T$, if $T_{0}=\left\{t_{0}\right\}$, then

$$
\mathbb{P}\left\{\sup _{t \in T}\left|X_{t}-X_{t_{0}}\right|>\sum_{n \geq 1} \varepsilon_{n}\right\} \leq \sum_{n \geq 1} \# T_{n} \max _{s \in T_{n}} \#\left\{t \in T_{n}: \rho(t, s) \leq \Delta_{n}\right\} f\left(\varepsilon_{n}, \Delta_{n}\right), \quad \forall \varepsilon_{n}>0,
$$

where $\Delta_{n}=2 \sup _{t \in T} \rho\left(t, T_{n-1}\right)$.

Proof．Define $\pi_{n}(t)=\arg \min _{s \in T_{n}} \rho(t, s)$ ，which $=t$ for sufficiently large n ．Using the relation that $X_{t}-X_{t_{0}}=\sum_{n \geq 1}\left(X_{\pi_{n}(t)}-X_{\pi_{n-1}(t)}\right)$ ，we have

$$
\left\{\sup _{t \in T}\left|X_{t}-X_{t_{0}}\right|>\sum_{n \geq 1} \varepsilon_{n}\right\} \subset \bigcup_{t \in T} \bigcup_{n \geq 1}\left\{\left|X_{\pi_{n}(t)}-X_{\pi_{n-1}(t)}\right|>\varepsilon_{n}\right\} \subset \bigcup_{n \geq 1} \bigcup_{t, s \in T_{n}: \rho(t, s) \leq \Delta_{n}}\left\{\left|X_{t}-X_{s}\right|>\varepsilon_{n}\right\},
$$

where $\Delta_{n} \geq \rho\left(t, T_{n}\right)+\rho\left(t, T_{n-1}\right)=\rho\left(t, \pi_{n}(t)\right)+\rho\left(t, \pi_{n-1}(t)\right) \geq \rho\left(\pi_{n}(t), \pi_{n-1}(t)\right)$ ．
2．（Kolmogorov－Chentsov）Assume that $X=\left(X_{t}\right)_{t \in[0,1]^{d}}$ admits some constants $a, b, K \in(0, \infty)$ for which

$$
\mathbb{E}\left|X_{t}-X_{s}\right|^{a} \leq K\|t-s\|_{\infty}^{d+b}, \quad \forall t, s \in[0,1]^{d} .
$$

It＇s immediate for 1 that $f(\varepsilon, \Delta)=K \Delta^{d+b} / \varepsilon^{a}$ applies when $\rho(t, s)=\|t-s\|_{\infty}$ ，by Markov＇s inequality． Let $c \in(0, b / a)$ ．Denote the dyadic lattice by $D=\bigcup D_{n}$ where $D_{n}=\left\{k / 2^{n}: k=0,1, \cdots, 2^{n}-1\right\}^{d}$ ．
（a）The path $t \in D \mapsto X_{t}$ is Hölder continuous of order c ，with probability one．
Proof．Note that if $q, r \in D:\|q-r\|_{\infty}<2^{1-m}$ ，then there exist $q_{0}, r_{0} \in D_{m}:\left\|q_{0}-r_{0}\right\|_{\infty} \leq 2^{-m}$ ， $q \in D\left(q_{0}, m\right)=q_{0}+2^{-m} D, r \in D\left(r_{0}, m\right)=r_{0}+2^{-m} D$ ．Hence，with $L=1+2 /\left(2^{c}-1\right)$,

$$
\begin{aligned}
& \bigcup_{\substack{q, r \in D: \\
\|q-r\|_{\infty}<2^{-M}}}\left\{\left|X_{q}-X_{r}\right|>L\|q-r\|_{\infty}^{c}\right\}=A_{M} \\
& \subset \bigcup_{m>M} \bigcup_{\substack{q, r \in D: \\
2^{-m} \leq\|q-r\| \infty<2^{1-m}}}\left\{\left|X_{q}-X_{r}\right|>L \cdot 2^{-c m}\right\} \\
& \subset \bigcup_{m>M} \bigcup_{\substack{q_{0}, r_{0} \in D_{m}: \\
\left\|q_{0}-r_{0}\right\| \infty \leq 2}} \bigcup_{q \in D\left(q_{0}, m\right)} \bigcup_{r \in D\left(r_{0}, m\right)}\left(\begin{array}{l}
\left\{\left|X_{q}-X_{q_{0}}\right|>2^{-c m} /\left(2^{c}-1\right)\right\} \\
\cup\left\{\left|X_{q_{0}}-X_{r_{0}}\right|>2^{-c m}\right\} \\
\cup\left\{\left|X_{r_{0}}-X_{r}\right|>2^{-c m} /\left(2^{c}-1\right)\right\}
\end{array}\right) \\
& =\bigcup_{m>M} \bigcup_{\substack{q_{0}, r_{0} \in D_{m}: \\
\left\|q_{0}-r_{0}\right\| \infty \leq 2^{-m}}}\left(\begin{array}{c}
\left\{\left|X_{q_{0}}-X_{r_{0}}\right|>2^{-c m}\right\} \\
\cup\left\{\sup _{q \in D\left(q_{0}, m\right)}\left|X_{q}-X_{q_{0}}\right|>2^{-c m} \sum_{n \geq 1} 2^{-c n}\right\} \\
\cup\left\{\sup _{r \in D\left(r_{0}, m\right)}\left|X_{r}-X_{r_{0}}\right|>2^{-c m} \sum_{n \geq 1}^{n} 2^{-c n}\right\}
\end{array}\right),
\end{aligned}
$$

whose probability is bounded by

$$
\begin{aligned}
& \sum_{m>M} 2^{d m} \cdot 3^{d} \cdot\left(f\left(2^{-c m}, 2^{-m}\right)+2 \sum_{n \geq 1} 2^{d n} \cdot 9^{d} \cdot f\left(2^{-c m-c n}, 2 \cdot 2^{-m-(n-1)}\right)\right) \\
& =3^{d} K \sum_{m>M} 2^{(a c-b) m}\left(1+9^{d} 2^{1+2(d+b)} \sum_{n \geq 1} 2^{(a c-b) n}\right) \lesssim 2^{(a c-b) M} .
\end{aligned}
$$

Now $\sum \mathbb{P}\left(A_{M}\right)<\infty$ ，so $\mathbb{P}\left(A_{M}\right.$ i．o．$)=0$ by the Borel－Cantelli lemma．For $\omega \in\left\{A_{M} \text { i．o．}\right\}^{\complement}=\bigcup A_{M}^{\complement}$ ， let

$$
M_{*}(\omega)=\inf \left\{M: \omega \in A_{M}^{\mathrm{C}}\right\}
$$

$\forall t, s \in D$ can be connected by $s=s_{0} \leftrightarrow s_{1} \leftrightarrow \cdots \leftrightarrow s_{n}=t$ with $\left\|s_{i}-s_{i-1}\right\|_{\infty}<2^{-M_{*}(\omega)}\|t-s\|_{\infty}$ and $n \leq N(\omega)=1+2^{M_{*}(\omega)}$ ．It follows that $\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq N(\omega) \cdot L \cdot 2^{-c M_{*}(\omega)}\|t-s\|_{\infty}^{c}$ ．
（b）A continuous process $\tilde{X}=\left(\tilde{X}_{t}\right)_{t \in[0,1]^{d}}$ agreeing with X on D a．s．is a modification of X ． Note that the Hölder continuity of \tilde{X} on D extends with the same order to the entire cube $[0,1]^{d}$ ．
Proof．For any $t \in[0,1]^{d}$ ，choose a sequence $\left\{t_{n}\right\} \subset D$ with $t_{n} \rightarrow t$ ．Then $\tilde{X}_{t_{n}} \stackrel{\text { a．s．}}{=} X_{t_{n}}$ ．Since $\tilde{X}_{t_{n}} \rightarrow \tilde{X}_{t}$ by continuity and $X_{t_{n}} \xrightarrow{L^{a}} X_{t}$ ，the uniqueness of limits in probability entails $\tilde{X}_{t} \stackrel{\text { a．s．}}{=} X_{t}$ ．
（c）The Brownian path is Hölder continuous of any order $<1 / 2$ ，with probability one．
Proof．If $Z \sim \mathcal{N}(0, t)$ ，then $\mathbb{E} Z^{2 k}=(2 k-1)!!\cdot t^{k}$ for every positive integer k ．

6.2 Nonsmoothness of sample path

Let $B=\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion.

1. The path $t \mapsto B_{t}$ is nowhere Hölder continuous of any order $>1 / 2$, with probability one.

Proof. (Dvoretsky-Erdős-Kakutani) Fixing $\alpha>1 / 2$ and $C>0$, it suffices to show that the event $A_{n}=\bigcup_{s \in[0,1]} \bigcap_{t:|t-s| \leq m / n}\left\{\left|B_{t}-B_{s}\right| \leq C|t-s|^{\alpha}\right\}$ has probability zero for $n \gg 1$, where $m>1 /(\alpha-1 / 2)$. On A_{n} we have $\max _{k<j \leq k+m}\left|B_{j / n}-B_{(j-1) / n}\right| \leq 2 \mathrm{Cm}^{\alpha} / n^{\alpha}$ for some $0 \leq k \leq n-m$. To conclude, note that $A_{n} \uparrow$ and that $(n-m+1) \mathbb{P}\left\{|\mathcal{N}(0,1 / n)| \leq M / n^{\alpha}\right\}^{m} \leq n \cdot\left(\frac{2 M}{\sqrt{2 \pi}} n^{1 / 2-\alpha}\right)^{m} \lesssim n^{1-(\alpha-1 / 2) m} \rightarrow 0$.
2. (Paley-Wiener-Zygmund) The path $t \mapsto B_{t}$ is nowhere differentiable, with probability one.

6.3 Reflection principle and arcsine law

Let $B=\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion, starting from x under \mathbb{P}_{x}. Denote $M_{t}=\max _{s \leq t} B_{s}$.

1. $B \stackrel{d}{=} 2 B^{T}-B$ for any stopping time T, where $B^{T}=\left(B_{t \wedge T}\right)_{t \geq 0}$.

Proof. By conditioning, assume $T<\infty$. Then by the strong Markov property, $B^{(T)}=\left(B_{T+t}-B_{T}\right)_{t \geq 0}$ is a standard Brownian motion starting from 0 and $B^{(T)} \Perp\left(B^{T}, T\right)$, so $\left(B^{T}, T, B^{(T)}\right) \stackrel{d}{=}\left(B^{T}, T,-B^{(T)}\right)$. Therefore, $B=B^{T}+B_{(\cdot-T)^{+}}^{(T)} \stackrel{d}{=} B^{T}-B_{(\cdot-T)^{+}}^{(T)}=2 B^{T}-B$.
2. $M_{t} \stackrel{d}{=}\left|B_{t}\right|$ for any $t \geq 0$, under \mathbb{P}_{0}.

Proof. Using the reflection principle with $T_{a}=\inf \left\{t: B_{t}=a\right\}$, we have $\left\{M_{t} \geq a\right\}=\left\{T_{a} \leq t\right\}$ and hence

$$
\mathbb{P}_{0}\left\{M_{t} \geq a, B_{t} \leq b\right\}=\mathbb{P}_{0}\left\{2 a-B_{t} \leq b\right\}=\mathbb{P}_{0}\{\mathcal{N}(0, t) \geq 2 a-b\}, \text { where } a \geq b \vee 0
$$

Thus, $\mathbb{P}_{0}\left\{M_{t} \in \mathrm{~d} a, B_{t} \leq b\right\}=\frac{2}{\sqrt{2 \pi t}} \mathrm{e}^{-(2 a-b)^{2} /(2 t)} \mathbb{1}_{[a \geq b \mathrm{~V} 0]}$. Letting $b \leftarrow a$ completes the proof.
3. Recall that $\arcsin \left(\frac{\xi}{\sqrt{\xi^{2}+\eta^{2}}}\right) \sim \operatorname{Uniform}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for $\xi, \eta \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$.
(a) $L=\sup \left\{t \leq 1: B_{t}=0\right\}$ satisfies that $\mathbb{P}_{0}\{L<t\}=\frac{2}{\pi} \arcsin \sqrt{t}$ for $t \in[0,1]$.

$$
\text { Proof. } \begin{aligned}
\mathbb{P}_{0}\{L<t\} & =\mathbb{P}_{0}\left\{\max _{s \in[t, 1]} B_{s}<0\right\}+\mathbb{P}_{0}\left\{\min _{s \in[t, 1]} B_{s}>0\right\} \\
& =\mathbb{P}_{0}\left\{\max _{s \in[t, 1]}\left(B_{s}-B_{t}\right)<-B_{t}\right\}+\mathbb{P}_{0}\left\{-\min _{s \in[t, 1]}\left(B_{s}-B_{t}\right)<B_{t}\right\} \\
& =\mathbb{P}\{\sqrt{1-t}|\xi|<-\sqrt{t} \eta\}+\mathbb{P}\{\sqrt{1-t}|\xi|<\sqrt{t} \eta\} \\
& =\mathbb{P}\{\sqrt{1-t}|\xi|<\sqrt{t}|\eta|\} \\
& =\mathbb{P}\left\{\frac{\xi^{2}}{\xi^{2}+\eta^{2}}<t\right\} \quad=\frac{2}{\pi} \arcsin \sqrt{t} .
\end{aligned}
$$

(b) $\tau=\inf \left\{t: B_{t}=M_{1}\right\}$ satisfies that $\mathbb{P}_{0}\{\tau \leq t\}=\frac{2}{\pi} \arcsin \sqrt{t}$ for $t \in[0,1]$.

Proof. We have $\left(B_{t-s}-B_{t}\right)_{s \in[0, t]} \stackrel{d}{=}\left(B_{s}-B_{0}\right)_{s \in[0, t]}$, and thus $M_{t}-B_{t} \stackrel{d}{=} M_{t}-B_{0}$. With this in $\operatorname{mind}, \mathbb{P}_{0}\{\tau \leq t\}=\mathbb{P}_{0}\left\{M_{t}-B_{t} \geq \max _{s \in[t, 1]} B_{s}-B_{t}\right\}=\mathbb{P}\{\sqrt{t}|\eta| \geq \sqrt{1-t}|\xi|\}=\mathbb{P}\left\{\frac{\xi^{2}}{\xi^{2}+\eta^{2}} \leq t\right\}$.

[^0]: https://www.math.cmu.edu/users/ttkocz/teaching/1920/prob-grad-notes.pdf
 https://math.mit.edu/~nsun/f19-18675.html
 https://www.stat.berkeley.edu/~aldous/205A
 https://statweb.stanford.edu/~adembo/stat-310b
 https://people.math.wisc.edu/~roch/grad-prob
 https://www.math.ucla.edu/~biskup/275c.1.21s
 http://www.statslab.cam.ac.uk/~james/Lectures/ap.pdf
 http://www.hairer.org/notes/Markov.pdf
 https://www.mat.univie.ac.at/~bruin/ET3.pdf
 https://people.bath.ac.uk/maspm/bm11.html
 http://www.math.leidenuniv.nl/~spieksma/SPspring08.html
 http://www.stat.cmu.edu/~cshalizi/almost-none
 https://user.eng.umd.edu/~abarg/MDP

