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1 Basic tools
1.1 Best constant approximation
Let m be a median of X, i.e., P{X ≤ m} ≥ 1/2 and P{X ≥ m} ≥ 1/2.

1. m ∈ argminx E|X − x|.

Proof. If a < b, then |X − b| − |X − a| =
{
(b− a)(1− 2 · 1{X≥b}) + 2(a−X)1{a<X<b}

(b− a)(2 · 1{X≤a} − 1) + 2(b−X)1{a<X<b}
. This implies

that x 7→ E|X − x| is nonincreasing on (−∞,m] and is nondecreasing on [m,∞).

2. |EX −m| ≤
√
Var(X).

Proof. |EX −m| ≤ E|X −m| ≤ E|X − x| ≤
√
E|X − x|2, ∀x.

3. EX = argminx E|X − x|2.

Proof. E|X − x|2 = E|X − EX − (x− EX)|2 = E|X − EX|2 + |x− EX|2.

1.2 Integration — layer cake representation
1. (Integrability) Let X ≥ 0. Then EX <∞ if and only if

∑
P{X > n} <∞.

Proof. Note that EX =
∫∞
0

P{X > x} dx =
∑∞

n=1

∫ n

n−1
P{X > x} dx, where for n− 1 ≤ x ≤ n one has

P{X > n} ≤ P{X > x} ≤ P{X > n− 1}.

Therefore,
∑∞

n=1 P{X > n} ≤ EX ≤ 1 +
∑∞

n=1 P{X > n}.

2. (Exponential decay) If P{X > x} = O(qx) as x→∞ for some q ∈ (0, 1), then E etX <∞ for some t > 0.
The converse is also true, due to Chernoff’s bound.

Proof. Since P{etX > n} = P{X > log(n)/t} ≲ qlog(n)/t = nlog(q)/t, it suffices that t < − log(q).

3. If X ⊥⊥ Y , then E|X + Y | − E|X − Y | = 2
∫∞
0

(
P{X > u} − P{X < −u}

)(
P{Y > u} − P{Y < −u}

)
du.

(Shepp) If X and Y are i.i.d., then E|X + Y | ≥ E|X − Y |, with equality holding if and only if X d
= −X.

Proof. To begin with, denote by P and Q the distributions of X and Y , respectively. Then

E(X + Y )+ =
∫∞
0

P{X + Y > t} dt =
∫
R3 1[t>0]1[x+y>t] dP (x)dQ(y)dt

=
∫
R3 1[y>−u]1[x>u] dP (x)dQ(y)du

=
∫∞
−∞ P{X > u}P{Y > −u} du

=
∫∞
0

(
P{X > u}P{Y > −u}+ P{X > −u}P{Y > u}

)
du.

Similarly, E(X+Y )− =
∫∞
0

P{X+Y < −t} dt =
∫∞
0

(
P{X < u}P{Y < −u}+P{X < −u}P{Y < u}

)
du.

By symmetry,
{
E(X − Y )+ =

∫∞
0

(
P{X > u}P{Y < u}+ P{X > −u}P{Y < −u}

)
du,

E(X − Y )− =
∫∞
0

(
P{X < u}P{Y > u}+ P{X < −u}P{Y > −u}

)
du.

Therefore,

E|X + Y | − E|X − Y | =
(
E(X + Y )+ + E(X + Y )−

)
−

(
E(X − Y )+ + E(X − Y )−

)
=

(
E(X + Y )+ − E(X − Y )+

)
−

(
E(X − Y )− − E(X + Y )−

)
=

∫∞
0

(
P{X > u}+ P{X > −u}

)(
P{Y > u} − P{Y < −u}

)
du

−
∫∞
0

(
P{X < u}+ P{X < −u}

)(
P{Y > u} − P{Y < −u}

)
du

= 2
∫∞
0

(
P{X > u} − P{X < −u}

)(
P{Y > u} − P{Y < −u}

)
du,

since 1(−u,∞) − 1(−∞,u) = 1(u,∞) − 1(−∞,−u).
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1.3 Generalized second Borel–Cantelli lemma
1. (Paley–Zygmund) If X ≥ 0 with 0 < EX <∞, then P{X > tEX} ≥ (1− t)2(EX)2/EX2, ∀ t ∈ [0, 1].

Proof. EX = EX1{X>tEX} + EX1{X≤tEX} ≤
√
EX2 P{X > tEX}+ tEX.

2. (Chung–Erdős) If A1, . . . , An are events, then P(
⋃n

k=1Ak) ≥ [
∑n

k=1 P(Ak)]
2/

∑n
i,j=1 P(Ai ∩Aj).

Proof. Apply the Paley–Zygmund inequality to X =
∑n

k=1 1Ak
with t = 0.

3. (Kochen–Stone) If
∑∞

k=1 P(Ak) =∞, then P(An i.o.) ≥ lim supn→∞[
∑n

k=1 P(Ak)]
2/

∑n
i,j=1 P(Ai ∩Aj).

First Proof. Let xn = [
∑n

k=1 P(Ak)]
2 and yn =

∑n
i,j=1 P(Ai ∩ Aj). By the Chung–Erdős inequality, we

have yn ≥ xn →∞ as n→∞, and then using the fact that
∑n

i,j=m+1 P(Ai ∩Aj) ≤ yn − ym,

P
( ∞⋃

k=m+1

Ak

)
= lim

n→∞
P
( n⋃

k=m+1

Ak

)
≥ lim sup

n→∞

(
√
xn −

√
xm)2

yn − ym
= lim sup

n→∞

xn
yn
.

Letting m→∞ completes the proof.

Second Proof. Let Xn =
∑n

k=1 1Ak
and Yn = Xn/EXn. Then {An i.o.} = {limXn =∞} ⊃ {Yn > t i.o.}

for any t ∈ (0, 1), since limEXn =∞. Therefore,

P(An i.o.) ≥ limn→∞ P(
⋃∞

k=n{Yk > t}) ≥ lim supn→∞ P{Yn > t},

where P{Yn > t} ≥ (1− t)2/EY 2
n = (1− t)2(EXn)

2/EX2
n by the Paley–Zygmund inequality.

1.4 Equality contained in conditional expectation
Let X and Y be integrable random variables.

1. If X d
= Y = E[X|G ], then X

a.s.
= Y .

Proof. First, consider the special case when X and Y are square integrable. Since EX2 = EY 2 = EXY ,
we have E(X − Y )2 = 0 and thus X a.s.

= Y . For the general case, we will show that

a ∨X ∧ b a.s.
= a ∨ Y ∧ b,

and conclude by letting a ↘ −∞ and b ↗ ∞. By Jensen’s inequality, E[a ∨ X |G ] ≥ a ∨ Y , where the
equality must hold for E a ∨X = E a ∨ Y . Finally, a ∨X ∧ b d

= a ∨ Y ∧ b = E[a ∨X ∧ b |G ].

2. If E[X|Y ] = Y and E[Y |X] = X, then X
a.s.
= Y .

Proof. Let h : R→ R be bounded and strictly increasing, e.g., h = arctan. Since

{X 6= Y } = {(X − Y )
(
h(X)− h(Y )

)
> 0},

it suffices to show E (X−Y )
(
h(X)−h(Y )

)
= 0. To see this, EY h(X) = E{E[Y |X]h(X)} = EXh(X).

1.5 Correlation inequality and independent copies
1. (Harris–FKG / Chebyshev–Kimball) Let f, g : Rn → R be nondecreasing functions, and X = (X1, . . . , Xn)

be a random vector with independent coordinates. Then E f(X)g(X) ≥ Ef(X)Eg(X).

Proof. First, consider the case n = 1. Let X ′ be an independent copy of X. Taking the expectation of(
f(X)− f(X ′)

)(
g(X)− g(X ′)

)
≥ 0

2
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leads to the desired result. Then we perform induction on n. Define f1(x1) = E[f(X)|X1 = x1] and
g1(x1) = E[g(X)|X1 = x1], which preserves monotonicity. It follows from the inductive hypothesis that

E[f(X)g(X)|X1] ≥ f1(X1)g1(X1),

where E f1(X1)g1(X1) ≥ Ef1(X1)Eg1(X1) = Ef(X)Eg(X).

2. (Kac) If E e
√
−1(sX+tY ) = E e

√
−1sX E e

√
−1tY for any s and t, then X and Y are independent.

Proof. Let ξ and η be independent random variables such that ξ d
= X and η

d
= Y . We have

E e
√
−1(sX+tY ) = E e

√
−1sX E e

√
−1tY = E e

√
−1sξ E e

√
−1tη = E e

√
−1(sξ+tη),

and thus (X,Y )
d
= (ξ, η) by the uniqueness of characteristic functions.

3. If ϕ is a characteristic function, then so are ϕ2, |ϕ|2, and Reϕ.

Proof. Suppose that ϕ(t) = E e
√
−1tX for some random variable X. Let X ′ be an independent copy

of X. Then ϕ(t)2 = E e
√
−1t(X+X′) and |ϕ(t)|2 = E e

√
−1t(X−X′). Let Y = X1{U=1} − X ′

1{U=0} for
U ∼ Bernoulli(1/2) independent of {X,X ′}. Then E e

√
−1tY = 1

2 (ϕ(t) + ϕ(−t)) = Reϕ(t).

1.6 Taking advantage of characteristic functions
Given a random variable X, denote FX(x) = P{X ≤ x} and ϕX(t) = E e

√
−1tX = E cos(tX) +

√
−1E sin(tX).

1. (Constancy and independence) In each of the following cases, X is almost surely a constant:
(a) |ϕX | ≡ 1; (b) X ⊥⊥ X; (c) X ⊥⊥ Y and X + Y is a constant.

Proof. By the uniqueness of characteristic functions, it suffices that ϕX ≡ 1.
(a) For every t ∈ R, note that |ϕX(t)|2 = [E cos(tX)]2 + [E sin(tX)]2 ≤ E cos2(tX) + E sin2(tX) = 1 with
equality holding only if cos(tX)

a.s.
= ct and sin(tX)

a.s.
= st for some constants ct and st, which means that

tX ∈ (± arccos(ct) + 2πZ) ∩ ({arcsin(st), π − arcsin(st)}+ 2πZ).

Then let t varies. (b)&(c) can be reduced to (a).

2. (Second moment) 11
24E[X

2; |X| < 1
t ] ≤

1
t2 (1−ReϕX(t)), ∀t > 0. It follows that EX2 <∞ if ϕ′′X(0) exists.

Proof. Note that 1 − cosu ≥ u2

2 −
u4

24 , so
∫∞
−∞(1 − cos(tx)) dFX(x) ≥

∫ 1/t

−1/t
( 12 −

t2x2

24 )t2x2 dFX(x) where
1
2 −

t2x2

24 ≥
11
24 . As t→ 0, we have 1− ReϕX(t) = − 1

2 (ϕX(t) + ϕX(−t)− 2ϕX(0)) ∼ − 1
2ϕ

′′
X(0)t2.

If ϕX(t) = 1− ct2 + o(t2) as t→ 0 for some constant c ∈ R, then EX = 0 and EX2 = 2c. In particular,
X

a.s.
= 0 if ϕX(t) = 1 + o(t2). As a corollary, ϕ(t) = e−|t|α is not a characteristic function for any α > 2.

Proof. We have ϕ′X(t) =
√
−1EXe

√
−1tX and ϕ′′X(t) = −EX2e

√
−1tX . Then put t = 0.

3. E|X|r = Kr

∫∞
−∞

1−ReϕX(t)
|t|r+1 dt for r ∈ (0, 2), where Kr is a constant only depending on r.

(Shepp) If X and Y are i.i.d., then E|X+Y |r ≥ E|X−Y |r, with equality holding if and only if X d
= −X.

Proof. Let Kr = 1
/ ∫∞

−∞
1−cosu
|u|r+1 du, which can be shown to be Γ(r+1)

π sin rπ
2 . Then

|x|r = Kr

∫ ∞

−∞

1− cos(xt)

|t|r+1
dt,

and thus E|X|r =
∫∞
−∞|x|

r dFX(x) can be evaluated by Fubini’s theorem. Based on such a formula,
Shepp’s inequality follows from the fact that 1− Reϕ2X ≥ 1− |ϕX |2, with equality holding if and only if
ϕ2X ≥ 0 if and only if ϕX is real-valued if and only if X d

= −X.

See https://artofproblemsolving.com/wiki/index.php/2021_IMO_Problems/Problem_2 for fun.
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1.7 Inversion formula for point masses
1. Let µ̂(t) =

∫
R e

√
−1tx dµ(x) for µ a probability measure on R. Then µ{a} = limT→∞

1
2T

∫ T

−T
e−

√
−1atµ̂(t) dt.

Proof. Fix a ∈ R. By Fubini’s theorem, 1
2T

∫ T

−T
e−

√
−1atµ̂(t) dt =

∫
R
(

1
2T

∫ T

−T
e
√
−1(x−a)t dt

)
dµ(x), where

1
2T

∫ T

−T
e
√
−1(x−a)t dt = 1

2T

∫ T

−T
cos((x− a)t) dt→ 1[x=a] and the dominated convergence applies.

2. If X ∼ P , Y ∼ Q, and X ⊥⊥ Y , then P{X = Y } =
∑

x P{x}Q{x}.
Note that P{x} > 0 for at most countably many x.

Proof. P{X = Y } = E1{X=Y } =
∫∫

1[x=y] dP (x) dQ(y) =
∑

x(P ⊗Q)({x} × {x}) =
∑

x P{x}Q{x}.

3. Let ϕX(t) = E e
√
−1tX . Then P{X = x} = 0 for all x if and only if limT→∞

1
2T

∫ T

−T
|ϕX(t)|2 dt = 0.

Proof. Consider µ to be the distribution of X −X ′, where X ′ is an independent copy of X. Combining
the previous results,

∑
x P{X = x}2 = P{X −X ′ = 0} = limT→∞

1
2T

∫ T

−T
|ϕX(t)|2 dt.

Therefore, the distribution of X has no point mass if ϕX(t) → 0 as t → ∞, which can be derived by
the Riemann–Lebesgue lemma when a probability density function exists. However, the converse is false,
e.g., 2

∑∞
k=1Xk/3

k has the Cantor distribution if X1, X2, . . .
i.i.d.∼ Bernoulli(1/2), whose characteristic

function is given by t 7→
∏∞

k=1
1
2 (1 + e2

√
−1t/3k) and has the same value on {3nπ}∞n=0.

2 Stochastic convergence
2.1 Convergence in probability from the perspective of metrics
The Ky Fan metric is defined as α(X,Y ) = inf

{
ε > 0 : P{|X − Y | > ε} ≤ ε

}
for random variables X and Y .

Also, introduce β(X,Y ) = E |X−Y |
1+|X−Y | and γ(X,Y ) = Emin{|X − Y |, 1}.

1. (Triangle inequality) α(X,Z) ≤ α(X,Y ) + α(Y, Z).

Proof. P{|X − Z| > ε1 + ε2} ≤ P{|X − Y | > ε1}+ P{|Y − Z| > ε2}.

One can check that α,β,γ are metrics indeed.

2. (Equivalence) α2/(1 + α) ≤ β ≤ 2α/(1 + α) and (trivially) β ≤ γ ≤ 2β.

Proof. Write α = α(X,Y ), β = β(X,Y ), and T = |X − Y |. On one hand, β ≥ ε
1+εP{T > ε} ε→α−−−→ α2

1+α .
On the other hand, β =

∫ 1

0
P{ T

1+T > u} du =
∫∞
0

P{T > t} dt
(1+t)2 ≤

∫ α

0
dt

(1+t)2 +
∫∞
α
α dt

(1+t)2 = 2α
1+α .

3. Xn
P−→ X ⇐⇒ γ(Xn, X)→ 0 ⇐⇒ β(Xn, X)→ 0 ⇐⇒ α(Xn, X)→ 0.

Proof. |Xn −X|
P−→ 0 ⇐⇒ min{|Xn −X|, 1}

P−→ 0 ⇐⇒ Emin{|Xn −X|, 1} → 0.

4. (Uniqueness) If Xn
P−→ X and Xn

P−→ Y , then X
a.s.
= Y .

5. If {Xn} is Cauchy in that P{|Xn −Xm| > ε} m,n→∞−−−−−→ 0 (∀ε > 0), then Xn converges in probability.

Proof. Now that α(Xn, Xm)
m,n→∞−−−−−→ 0, we choose {nj} such that supm>nj

P{|Xm −Xnj
| > 2−j} ≤ 2−j .

Then Aj = {|Xnj+1 −Xnj | > 2−j} satisfy that
∑

P(Aj) ≤
∑

2−j <∞, so the first Borel–Cantelli lemma
implies that A = {Aj i.o.} occurs with probability zero. Next we restrict ourselves to A∁, on which
limk→∞

∑∞
j=k|Xnj+1

−Xnj
| ≤ limk→∞

∑∞
j=k 2

−j = 0 and thus limk→∞Xnk
= Xn1

+
∑∞

j=1(Xnj+1
−Xnj

)
exists and is finite. Finally, it must hold that Xn converges to X = lim supk→∞Xnk

in probability, as
{|Xn −X| > ε} ⊂ {|Xn −Xnk

| > ε/2} ∪ {|Xnk
−X| > ε/2}.
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2.2 Convergence of random series — Lévy’s equivalence theorem
Let Sn =

∑n
i=1Xi where Xi’s are independent random variables.

1. (Ottaviani–Skorokhod) It holds for λ > 0 and µ > 0 that

P
{

max
m<j≤n

|Sj − Sm| > λ+ µ
}

min
m<k≤n

P{|Sn − Sk| ≤ µ} ≤ P{|Sn − Sm| > λ}.

Proof. Note that {|Sn−Sm| > λ} ⊃
⋃n

k=m+1

({
inf{j > m : |Sj−Sm| > λ+µ} = k

}
∩{|Sn−Sk| ≤ µ}

)
.

2. (Etemadi) P
{
maxm<j≤n|Sj − Sm| > 3λ

}
≤ 2P{|Sn − Sm| > λ}+maxm<k≤n P{|Sk − Sm| > λ}, ∀λ > 0.

Proof. From 1, P
{
maxm<j≤n|Sj − Sm| > 3λ

}
− P{|Sn − Sm| > λ} ≤ maxm<k≤n P{|Sn − Sk| > 2λ}, but

P{|Sn − Sk| > 2λ} ≤ P{|Sn − Sm| > λ}+ P{|Sk − Sm| > λ}.

3. If Sn converges in probability, then Sn converges almost surely.

Proof. It follows from P{|Sn − Sm| > λ} m,n→∞−−−−−→ 0 that P
{
maxm<j≤n|Sj − Sm| > 3λ

} m,n→∞−−−−−→ 0 by
Etemadi’s inequality. Then

P
{
supj,k>m|Sj − Sk| > 6λ

} m→∞−−−−→ 0.

However, supj,k>m|Sj − Sk| decreases with m and thus admits a pointwise limit Z. The uniqueness of
the limit in probability forces that Z a.s.

= 0, whence {Sn}∞n=1 is a Cauchy sequence and converges.

4. If Sn converges in distribution, then Sn converges in probability.

Proof. Since any Cauchy sequence in probability is convergent in probability, it suffices that Yj = Snj
−Smj

converges to zero in probability, or equivalently Yj
d−→ 0, for all sequences {nj} and {mj} with nj > mj .

For |t| small enough,
E e

√
−1tSmj E e

√
−1tYj = E e

√
−1tSnj ,

where limj→∞ E e
√
−1tSmj = limj→∞ E e

√
−1tSnj is nonzero. Hence, E e

√
−1tYj → 1 for t in a neighborhood

of 0. We then conclude by Lévy’s continuity theorem.

2.3 Series of nonnegative random variables
Let Sn =

∑n
i=1Xi where Xi ≥ 0 are independent. Then Sn ↗ S∞.

1. Kolmogorov’s zero–one law ensures that {
∑∞

n=1Xn <∞} is P-trivial. The following are equivalent:
(a)

∑∞
n=1Xn <∞ a.s.; (b)

∑∞
n=1

(
P{Xn > 1}+ E[Xn;Xn ≤ 1]

)
<∞; (c)

∑∞
n=1 E

Xn

1+Xn
<∞.

Proof. By Kolmogorov’s three-series theorem, (a) ⇐⇒
∑∞

n=1

[
P{Xn > 1}+EYn+Var(Yn)

]
<∞, where

Yn = Xn1{Xn≤1}. Since Var(Yn) ≤ EY 2
n and Y 2

n ≤ Yn, we obtain that (a) ⇐⇒ (b). As for (b) ⇐⇒ (c),
note that 1

2

(
P{Xn > 1}+ E[Xn;Xn ≤ 1]

)
≤ E Xn

1+Xn
< P{Xn > 1}+ E[Xn;Xn ≤ 1].

2. (Chi-squares) Suppose
√
Xn ∼ N (µn, σ

2
n). In other words, Xn = (µn + σnZn)

2 where Zn ∼ N (0, 1).

(a) If Sn converges in L1, then
∑∞

n=1(µ
2
n + σ2

n) <∞.

Proof. ES∞ =
∑∞

n=1(µ
2
n + σ2

n).

(b) If
∑∞

n=1(µ
2
n + σ2

n) <∞, then Sn converges in Lp for any p ∈ [1,∞).

Proof.
∑
‖Xn‖Lp ≤

∑(
µ2
n + 2|µnσn|‖Zn‖Lp + σ2

n‖Z2
n‖Lp

)
where 2|µnσn| ≤ µ2

n + σ2
n.

3. A useful fact is that S∞
a.s.
= ∞ ⇐⇒ 0 = E e−S∞ =

∏∞
n=1 E e−Xn . Also, S∞ <∞ a.s. if ES∞ <∞.
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(a) Suppose
√
Xn ∼ N (0, σ2

n). Then S∞
a.s.
= ∞ ⇐⇒

∑∞
n=1 σ

2
n =∞.

Proof.
∏

E e−Xn =
∏

E e−σ2
nZ

2
n =

∏
(1 + 2σ2

n)
−1/2 where

∏
(1 + 2σ2

n) ≥ 1 + 2
∑
σ2
n.

(b) Suppose Xn is exponentially distributed with rate λn. Then S∞
a.s.
= ∞ ⇐⇒

∑∞
n=1

1
λn

=∞.

Proof. 1
/∏

E e−Xn = 1
/∏ λn

λn+1 =
∏
(1 + 1

λn
) ≥ 1 +

∑
1
λn

.

2.4 Converse of strong law of large numbers
Let X,X1, X2, . . . be i.i.d., Sn =

∑n
i=1Xi, and p > 0.

1. E|X|p <∞ ⇐⇒ lim |Xn|p/n
a.s.
= 0 ⇐⇒ Xn/n

1/p a.s.−−→ 0.

Proof. For any ε > 0, we have E|X|p/ε < ∞ ⇐⇒
∑

P{|X|p > nε} < ∞ ⇐⇒ P{|Xn|p > nε i.o.} = 0
and {lim sup |Xn|p/n > ε} ⊂ {|Xn|p > nε i.o.} ⊂ {lim sup |Xn|p/n ≥ ε}.

2. If Sn/n
1/p a.s.−−→ 0 and p ≥ 1, then E|X|p <∞ and EX = 0.

Proof. Note that Xn/n
1/p = Sn/n

1/p− (1− 1/n)1/pSn−1/(n− 1)1/p
a.s.−−→ 0− 0 = 0, so E|X|p <∞. Since

E|X| <∞, Kolmogorov’s SLLN gives Sn/n
a.s.−−→ EX. Also, Sn/n = n1/p−1Sn/n

1/p a.s.−−→ 0.

2.5 Asymptotic behavior of Gaussian maxima

Let Z,Z1, Z2, . . .
i.i.d.∼N (0, 1), whose probability density function is φ(z) = 1√

2π
e−z2/2. Let Mn = max1≤i≤n Zi.

Since P{Mn ≤ z} = P{Z ≤ z}n and (1− 1
n )

n → e−1, let e−(x) = e−x and bn = inf{b : P{Z > b} ≤ 1
n} ↗ ∞.

1. (Mills ratio) 1/z − 1/z3 < z/(z2 + 1) < P{Z > z}/φ(z) < 1/z for z > 0.

Proof. 1
z e

−z2/2 −
∫∞
z

e−u2/2 du =
∫∞
z

1
u2 e

−u2/2 du < 1
z2

∫∞
z

e−u2/2 du.

2. limz→∞ P{Z > z + θ/z}/P{Z > z} = e−(θ), ∀θ ∈ R.

Proof. Since P{Z > z} ∼ 1
zφ(z) as z →∞, we have P{Z > z+ θ

z}/P{Z > z} ∼ φ(z+ θ
z )/φ(z) ∼ e−(θ).

3. (Extreme value distribution) Let an = 1/bn = o(1). Then P{(Mn − bn)/an ≤ x} → e−(e−(x)) for x ∈ R.

Proof. P{(Mn − bn)/an ≤ x} =
(
1− P{Z > anx+ bn}

)n where P{Z > anx+ bn} ∼ 1
ne−(x) using 2.

Recall the Fisher–Tippett–Gnedenko theorem.

4. bn ∼
√
2 log n and thus Mn/

√
2 log n

P−→ 1.

Proof. For n large enough, P{Z >
√
2 log n− 2 log vn} ∼ vn√

4π log n
· 1n if 1 ≤ vn = O(log n). By choosing vn

appropriately, √
2 log n− 2 log log n ≤ bn ≤

√
2 log n− log log n.

Then Mn −
√
2 log n =Mn − bn + bn −

√
2 log n = OP(an) + o(

√
2 log n) = oP(

√
2 log n).

5. EMn/
√
2 log n→ 1.

Proof. Jensen’s inequality gives etEMn ≤ EetMn for t ∈ R+. But etMn ≤
∑n

i=1 e
tZi , leading to

EetMn ≤ nEetZ = net
2/2.

Thus, EMn ≤ 1
t log(ne

t2/2) = logn
t + t

2 . We obtain EMn ≤
√
2 log n by optimizing the upper bound over t.

As for the lower bound, 0 ≤ EM−
n ≤ EZ− = O(1), and EM+

n /
√
2 log n =

∫∞
0

P{Mn/
√
2 log n > u} du

has lim inf ≥
∫∞
0

lim inf P{Mn/
√
2 log n > u} du by Fatou’s lemma, where P{Mn/

√
2 log n > u} → 1[u<1]

for almost all u. This shows that lim inf EMn/
√
2 log n = lim inf EM+

n /
√
2 log n ≥ 1.

6

https://handwiki.org/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem


Probability Exercises

2.6 Law of iterated logarithm
Let X = (Xt)t∈R+

be a stochastic process with continuous sample paths. Denote ht =
√
2t log log t.

1. (Upper bound derived by sub-Gaussianity) If there exist 0 < vt = O(t) such that P{X∗
t > λ} ≲ e−λ2/(2vt)

for λ > 0, then lim supt→∞X∗
t /ht ≤ 1 a.s., where X∗

t = sups≤tXs is the running maximum.

Proof. For any t > ee and c > 1, we have P{X∗
t > cht} ≲ e−c2(t/vt) log log t ≲ (log t)−c2 . Choosing tn = qn

for some q > 1, it follows that
P{X∗

qn > chqn} ≲ n−c2 .

Since
∑
n−c2 < ∞, we obtain that P{X∗

qn > chqn i.o.} = 0 by the Borel–Cantelli lemma. This implies
that lim supn→∞X∗

qn/hqn ≤ c a.s.. Note that

X∗
t /ht ≤ X∗

qn/hqn−1 = (X∗
qn/hqn)(hqn/hqn−1), t ∈ [qn−1, qn].

Thus, lim supt→∞X∗
t /ht ≤ c

√
q a.s.. Letting c↘ 1 and q ↘ 1 completes the proof.

2. (Lower bound) If lim supt→∞(−Xt)/ht ≤ 1 a.s. and lim supt→∞(Xt−Xt/q)/ht ≥
√

(q − 1)/q a.s. for any
q > 1, then lim supt→∞Xt/ht ≥ 1 a.s..

Proof. (a.s.) lim supt→∞(−Xt/q)/ht ≤ limt→∞ ht/q/ht = 1/
√
q, so lim supt→∞Xt/ht ≥ (

√
q − 1−1)/

√
q,

where (
√
q − 1− 1)/

√
q → 1 as q →∞.

3 Martingales
See https://zhuanlan.zhihu.com/p/76804737 for a fast-paced review, whose
pdf version is available; see comments therein.

3.1 Switch at a stopping time
1. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be supermartingales with respect to a filtration (Ft)t≥0. Suppose τ is

a stopping time such that Xτ ≤ Yτ . Define Zt = Xt1{τ≤t} + Yt1{τ>t} and Wt = Xt1{τ<t} + Yt1{τ≥t}.
Then Z = (Zt)t≥0 and W = (Wt)t≥0 are also an (Ft)t≥0-supermartingales.

Proof. Write ∆−Xt = Xt −Xt− and ∆+Xt = Xt+ −Xt. It can be seen that{
∆−Zt = ∆−Xt1{τ<t} +∆−Yt1{τ≥t} + (Xτ − Yτ )1{τ=t}

∆+Wt = ∆+Xt1{τ≤t} +∆+Yt1{τ>t} + (Xτ − Yτ )1{τ=t}
,

so
{
E[∆−Zt|Ft−] = E[∆−Xt|Ft−]1{τ<t} + E[∆−Yt|Ft−]1{τ≥t} + E[(Xτ − Yτ )1{τ=t}|Ft−] ≤ 0

E[∆+Wt|Ft] = E[∆+Xt|Ft]1{τ≤t} + E[∆+Yt|Ft]1{τ>t} + E[(Xτ − Yτ )1{τ=t}|Ft] ≤ 0
.

2. (Dubins) Let X = (Xt)t≥0 be a positive supermartingale with respect to a filtration (Ft)t≥0. Denote
by Ua,b the number of upcrossings through [a, b] made by t 7→ Xt. Then P{Ua,b ≥ k} ≤ (a/b)kEmin{X0/a, 1}.

Proof. Let τ0 = 0 and
{
σj = inf{t ≥ τj−1 : Xt ≤ a}
τj = inf{t ≥ σj : Xt ≥ b}

for j = 1, 2, · · · . Define W (0) = min{X/a, 1} and

recursively
{
Z

(j)
t =W

(j−1)
t 1{t<σj} + (b/a)j−1(Xt/a)1{t≥σj}

W
(j)
t = Z

(j)
t 1{t≤τj} + (b/a)j1{t>τj}

so that by 1 they are supermartingales

with respect to Ft = σ(Xs : s ≤ t). In order to bound P{Ua,b ≥ k} = P{τk < ∞} = limt→∞ P{τk < t},
note that (b/a)kP{τk < t} ≤ EW (k)

t ≤ EW (k)
0 = EW (0)

0 .
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3. (Random walk) Let Sn =
∑n

i=1 εi with εi’s taking values in {±1}. For any s = (sn)n≥0, define τk(s) =
inf{n : sn = k} and Θk(s) =

(
sn1[n≤τk(s)] + (2k − sn)1[n>τk(s)]

)
n≥0

. If S satisfies the reflection principle

that Θk(S)
d
= S for k = 0, 1, 2, · · · , then S is a symmetric simple random walk.

Proof. It suffices that S0:n = (S0, S1, . . . , Sn) is uniformly distributed on Λn = {s0:n = (s0, s1, . . . , sn) :
s0 = 0, si − si−1 = ±1 (∀i)}. Let s be a possible path with s0:n as its first (n+ 1) elements. There exist
k1 < · · · < km such that Θ(s) = Θkm

◦· · ·◦Θk1
transforms s to have (0, 1, · · · , n) as its first (n+1) elements.

Then Θ(s)(S)
d
= S, so P{S0:n = s0:n} = P{Θ(s)(S)0:n = Θ(s)(s)0:n} = P{S0:n = (0, 1, · · · , n)}.

4. (Converse of optional stopping theorem) Let M = (Mt)t≥0 be an integrable stochastic process adapted
to a filtration (Ft)t≥0. Then M is a martingale if EMτ = EM0 for every bounded stopping time τ .

Proof. Let s < t. If A ∈ Fs, then τ = s1A + t1A∁ is a stopping time. Thus,

0 = EMt − EMτ = E[Mt −Ms;A].

Since A is arbitrary, we conclude that E[Mt|Fs] =Ms.

3.2 Optimal stopping with finite horizon
Let Y = (Yn)n=0,1,··· ,N be an integrable stochastic process adapted to a filtration (Fn)n=0,1,··· ,N . Then the
Snell envelope U = (Un)n=0,1,··· ,N is recursively defined by UN = YN and Un = Yn ∨ E[Un+1|Fn] for n < N .
Denote by St1t0 the set of stopping times τ with t0 ≤ τ ≤ t1.

1. U is a supermartingale and Un ≤ Xn for all n if X is a supermartingale such that Xn ≥ Yn for all n.

Proof. First, XN ≥ YN = UN . If Xn+1 ≥ Un+1, then Xn ≥ E[Xn+1|Fn] ≥ E[Un+1|Fn], so Xn ≥ Un.

2. (Value function) supτ∈SN
n
E[Yτ |Fn] = Un = E[Yτn |Fn], where τn = inf{t ≥ n : Yt = Ut}. Consequently,

(Bellman equation) supτ∈SN
n
E[Yτ |Fn] = Yn ∨ E

[
supτ∈SN

n+1
E[Yτ |Fn+1]

∣∣Fn

]
for n < N .

Proof. The statement is trivial for n = N . We proceed backwards inductively. If τ ∈ SNn−1, then
τ ∨ n ∈ SNn and thus E[Yτ∨n|Fn] ≤ Un. For Yτ = Yn−11{τ=n−1} + Yτ∨n1{τ≥n}, we have

E[Yτ |Fn−1] = Yn−11{τ=n−1} + E[Yτ∨n|Fn−1]1{τ≥n} ≤ Un−11{τ=n−1} + E[Un|Fn−1]1{τ≥n} ≤ Un−1,

with equality holding when τ = τn−1, since Yτn−1
= Un−11{τn−1=n−1} + Yτn1{τn−1≥n}.

Particularly, EYτ = E{E[Yτ |F0]} ≤ EU0 = EYτ0 for any τ ∈ SN0 , and thus τ0 = argmaxτ∈SN
0
EYτ .

Besides, the stopped supermartingale Uτ0 = (Un∧τ0)n=0,1,··· ,N is actually a martingale, since Uτ0 = Yτ0 .

3. (Cayley–Moser) Suppose that Yn’s are i.i.d. copies of Y and Fn = σ(Y0, Y1, . . . , Yn). Then E[Un+1|Fn] =
AN−n is a constant that depends only on N − n. Moreover,

(a) An = log
(
n+O(log n)

)
if Y ∼ Exponential(1).

(b) An = 1− 2/[n+ log(n) +O(1)] if Y ∼ Uniform(0, 1).

Proof. PutA0 = −∞. By induction, E[Un|Fn−1] = E[Yn∨AN−n|Fn−1] = E[Y ∨AN−n] since Yn ⊥⊥ Fn−1.
This also leads to the recursion formula An+1 = E[Y ∨An], starting from A1 = EY .

(a) Now An+1 = An + e−An . Write An = log(n+ xn), then
1

n+xn
= e−An = An+1 −An = log(1 + 1+xn+1−xn

n+xn
).

Using u
1+u ≤ log(1 + u) ≤ u, we obtain that 0 ≤ xn+1 − xn ≤ 1

n+xn−1 ≲ 1
n .

(b) Now An+1 = (A2
n+1)/2. Write An = 1−2/(n+xn), then some calculation gives xn+1−xn = 1

n+xn−1 ,
so xn ≤ log(n) +O(1). It follows that xn − log(n)−O(1) ≥

∑n
k=1(

1
k+log k −

1
k ) ≥ −

∑∞
k=1

log k
k2 .
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3.3 Martingales derived from differentiation
Let M(θ) = (Mt(θ))t≥0 be a martingale with respect to a filtration (Ft)t≥0, for any θ in a neighborhood of 0.
If M (n)

t (θ) = ∂n

∂θnMt(θ) exists and E supθ|M
(n)
t (θ)| <∞ for all t, then (M

(n)
t (0))t≥0 is a martingale.

Proof. For s < t, we have E
[

∂n

∂θn

∣∣
0
Mt(θ)

∣∣Fs

]
= ∂n

∂θn

∣∣
0
E[Mt(θ) |Fs] by the dominated convergence.

E.g., the exponential martingale of a Brownian motion is associated with Hermite polynomials.

3.4 Strong law of large numbers
Let X,X1, X2, . . . be i.i.d. and Sn =

∑n
i=1Xi.

1. (Convergence rate) If EX2 <∞, then (Sn − nEX)/an
a.s.−−→ 0 for an = n1/2(log n)1/2+ϵ with ϵ > 0.

Proof. Let Mn =
∑n

i=1(Xi −EX)/ai, which is an L2-martingale adapted to Fn = σ(X1, . . . , Xn). Using
the fact that supEM2

n = Var(X) sup
∑n

i=1 1/a
2
i <∞, we obtain the a.s. convergence of Mn. The proof is

completed by applying Kronecker’s lemma.

2. (Moment convergence) If E|X|p <∞ for some p ∈ [1,∞), then X̄n
Lp

−−→ EX where X̄n = Sn/n.

Proof. Let F−n = σ(X̄n, Xn+1, Xn+2, . . . ), then X̄n = E[X1|F−n]
a.s.−−→ EX. By Vitali’s convergence

theorem, it suffices that {|X̄n|p}n≥1 is uniformly integrable, but |X̄n|p ≤ E[|X1|p|F−n].

4 Markov chains
Suppose throughout this section that X = (X0, X1, X2, . . . ) is a homogeneous Markov chain with transition
probabilities P(Xn = y |X0 = x) = pn(x, y) for states x, y. Denote Px = P( · |X0 = x) and Ex = E[ · |X0 = x].

4.1 First passage decomposition
Let Tx = inf{n ≥ 1 : Xn = x} and fn(x, y) = Px{Ty = n}.

1. pn(x, y) =
∑n

m=1 f
m(x, y) pn−m(y, y) for n ≥ 1. In other words,

Pxy(s) = 1[x=y] + Fxy(s)Pyy(s), where Pxy(s) =
∑∞

n=0 p
n(x, y)sn and Fxy(s) =

∑∞
n=0 f

n(x, y)sn.

Proof. {Xn = y} =
⋃n

m=1{Ty = m, Xn = y} and Px(Xn = · |Ty = m) = pn−m(y, ·).

2. Px{Tx <∞} = 1−1/G(x, x) where G(x, x) =
∑∞

n=0 p
n(x, x). Hence, Tx <∞ Px-a.s. ⇐⇒ G(x, x) =∞.

Proof. Let s↗ 1 in Fxx(s) = 1− 1/Pxx(s).

3.
∑N

n=0 p
n(x, x) ≥

∑N+k
n=k p

n(x, x), ∀k ≥ 1.

Proof. Let T = inf{n ≥ k : Xn = x}, then pn(x, x) =
∑n

m=k Px{T = m}pn−m(x, x) for n ≥ k. It follows
that

∑N+k
n=k p

n(x, x) =
∑N+k

n=k

∑n
m=k Px{T = m} pn−m(x, x) =

∑N+k
m=k Px{T = m}

∑N+k
n=m pn−m(x, x),

where
∑N+k

n=m pn−m(x, x) ≤
∑N

n=0 p
n(x, x) and

∑N+k
m=k Px{T = m} ≤ 1.

4.2 Number of visits
Let Vn(x) =

∑n
m=1 1{Xm=x} and T

(k)
x = inf{n > T

(k−1)
x : Xn = x}, where T (1)

x = Tx = inf{n > 0 : Xn = x}.
Clearly Vn(x) =

∑∞
k=1 1{T (k)

x ≤n}. Assume that X is irreducible and recurrent, so Px{Ty <∞} = 1, ∀x, y.

1. ExVTx
(y) =

Px{Ty<Tx}
Py{Tx<Ty} for x 6= y.

Proof. ExVTx
(y) =

∑∞
k=1 Px{T (k)

y < Tx} =
∑∞

k=1 Px{Ty < Tx}
∏k−1

j=1 Px(T
(j+1)
y < Tx |T (j)

y < Tx) where
Px(T

(j+1)
y < Tx |T (j)

y < Tx) = Py{Ty < Tx} due to the strong Markov property.
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2. ExVTx
(y)EyVTy

(z) = ExVTx
(z).

Proof. Since the stationary distribution is unique up to constant multiples, ExVTx
(·) ∝ EyVTy

(·).

3. Vn(y)
Vn(z)

P-a.s.−−−→ 1
EyVTy (z)

=
ExVTx (y)
ExVTx (z)

, and thus n
Vn(z)

=
∑

y
Vn(y)
Vn(z)

P-a.s.−−−→
∑

y
ExVTx (y)
ExVTx (z)

= ExTx

ExVTx (z)
= EzTz.

Proof. If T (k)
y ≤ n < T

(k+1)
y , then k

k+1 ·
k+1

V
T

(k+1)
y

(z) ≤
Vn(y)
Vn(z)

≤ k
V
T

(k)
y

(z) . To conclude, it suffices that
V
T

(k)
y

(z)

k = 1
k

[
VTy

(z)+
∑k−1

j=1

(
V
T

(j+1)
y

(z)−V
T

(j)
y

(z)
)] a.s.−−→ EyVTy

(z) by the strong law of large numbers.

4. ExVn(y)
ExVn(z)

→ 1
EyVTy (z)

=
ExVTx (y)
ExVTx (z)

.

Proof. Let L(n)
y = max{m ≤ n : Xm = y}1{Ty≤n}. Then the last exit decomposition gives

ExVn(z) =
∑n

m=1 Px{Xm = z} =
∑n

m=1 p
m(x, z)

=
∑n

m=1 Px{Xm = z, Ty > m}+
∑n

m=1

∑m
ℓ=1 Px{Xm = z, L

(m)
y = ℓ}

=
∑n

m=1 p
m
\y(x, z) +

∑n
ℓ=1

∑n
m=ℓ p

ℓ(x, y)pm−ℓ
\y (y, z),

where pm\y(x, z) = Px{Xm = z, Ty > m}. Since ExVn(y) ↗ ∞ and
∑∞

m=1 p
m
\y(x, z) = ExVTy (z) − 1[y=z],

we obtain that ExVn(z)
ExVn(y)

→
∑∞

m=ℓ p
m−ℓ
\y (y, z) = 1[y=z] + EyVTy (z)− 1[y=z] = EyVTy (z).

4.3 Superharmonicity and recurrence
A function f is said to be superharmonic if f(x) ≥

∑
y p

1(x, y)f(y) for all x, and to be harmonic if there are
only equalities. Suppose that X is irreducible.

1. x 7→ Px{TA <∞} is superharmonic, where TA = inf{n ≥ 1 : Xn ∈ A} for A a subset of the state space.

Proof. By the one-step forward analysis, Px{TA <∞} =
∑

y∈A p
1(x, y)+

∑
y/∈A p

1(x, y)Py{TA <∞}.

2. X is recurrent if and only if every bounded superharmonic function is constant.

Proof. Let f be a bounded superharmonic function so that Yn = f(Xn) is a bounded supermartingale
converging a.s. to some Y∞. IfX is recurrent, then for any x we have a.s. Xn = x i.o., and thus Y∞

a.s.
= f(x),

which forces f to be constant. Conversely, if X is transient, then take f(x) = G(x, z) =
∑∞

n=0 p
n(x, z)

for a fixed z. We have
∑

y p
1(x, y)f(y) = f(x) − 1[x=z], so f is a nonconstant superharmonic function.

Note that f ≤ G(z, z) <∞. As an alternative, one may consider f(x) = Px{T{z} <∞} for a fixed z.

3. (birth-and-death) Let the state space be N, and p1(x, y) = bx1[y=x+1] + dx1[y=x−1] where bx + dx = 1

and d0 = 0. Then X is recurrent if and only if
∑∞

x=0

∏x
y=1

dy

by
=∞.

Proof. Let h(x) = Px{T{0} <∞}. We have h(0) = h(1) = b1h(2)+d1 and h(x) = bxh(x+1)+dxh(x−1)

for x > 1, which can be written as h(x) − h(x + 1) = dx

bx

(
h(x − 1) − h(x)

)
. Then it’s easily seen that

1 − h(x) = (1 − h(1))g(x), where g(0) = 1 and g(x) =
∑x−1

z=0

∏z
y=1

dy

by
for x ≥ 1. If g(∞) = ∞, then the

boundedness of h entails that h(1) = 1, in which case X is recurrent. Conversely, if g(∞) <∞, then the
superharmonic function g(∞)− g is not constant, so X is transient.

Second Proof. Note that g̃(Xn∧τ ) is a martingale, where g̃ = g 1{0}∁ and τ = inf{n : Xn ∈ {0,M}} for
some M ∈ N. One can apply the optional stopping theorem to obtain that Px{T{0} > T{M}} = g(x)/g(M)
if 0 < x < M . Letting M →∞ gives Px{T{0} =∞} = g(x)/g(∞).

10
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4.4 Green’s function — potential theory
Suppose that X is irreducible. Let GA(x, y) = Ex

∑ϵA−1
n=0 1{Xn=y}, where A is a subset of the state space S, and

ϵA = inf{n : Xn /∈ A}. In particular, GS(x, y) = G(x, y) =
∑∞

n=0 p
n(x, y). Write Pf =

∑
y p

1(·, y)f(y) for a
function f on S which is either bounded or nonnegative. Note that Pnf =

∑
y p

n(·, y)f(y) =
(
x 7→ Exf(Xn)

)
.

1. Assume that X is recurrent and 0 < #A < #S.

(a) GA(x, y) <∞, ∀x, y ∈ S.

Proof. Note that GA(x, y) = 0 if x ∈ A∁ or (x, y) ∈ A×A∁. For x, y ∈ A, we have GA(x, y) ≤ ExϵA.
Since Px{ϵA > nx} < 1 for some nx ∈ N by the recurrence, we have

P(ϵA > nA |X0 ∈ A) ≤ maxx∈A Px{ϵA > nA} ≤ maxx∈A Px{ϵA > nx} = a < 1

for nA = maxx∈A nx, and thus Px{ϵA > knA} =
∏k

j=1 Px(ϵA > jnA | ϵA > (j − 1)nA) ≤ ak for every
k ∈ N, which implies that ExϵA ≲ nA

∑
ak <∞.

(b) (1− P)GA(·, y) = 1{y} on A, for any y ∈ A.

Proof. For any x ∈ A, we have

GA(x, y)− 1{y}(x) =
∑

z∈A Ex

∑ϵA−1
n=1 1{X1=z,Xn=y} =

∑
z∈A p

1(x, z)GA(z, y)

by the strong Markov property, but GA(z, y) = 0 for z /∈ A.

(c) For any function ϱ on A, the Poisson equation
{
(1− P)ψ = ϱ on A

ψ = 0 on A∁ has a unique solution ψ given

by
∑

y∈AGA(·, y)ϱ(y), as GA is the fundamental solution suggested by 1b.

Proof. It remains to show the uniqueness. If ψ is a solution to the Poisson equation, then for any
x ∈ A, ∑

y∈AGA(x, y)ϱ(y) =
∑

y∈AGA(x, y)
(
ψ(y)−

∑
z∈A p

1(y, z)ψ(z)
)

=
∑

z∈A ψ(z)
∑

y∈AGA(x, y)
(
1[y=z] − p1(y, z)

)
=

∑
z∈A ψ(z)1[x=z] = ψ(x),

since GA(x, z)− 1[x=z] =
∑

y∈A Ex

∑ϵA−1
n=1 1{Xn−1=y,Xn=z} =

∑
y∈AGA(x, y) p

1(y, z).

2. Assume here that X is transient, whence G(x, y) <∞, ∀x, y ∈ S.

(a) PnG(·, y)(x)→ 0 as n→∞, ∀x, y ∈ S.

Proof. Proceeding the same way as in 1b, we have (1− P)G(·, y) = 1{y}, so

PnG(·, y)(x)− Pn+1G(·, y)(x) = Pn
1{y}(x) = Ex1{y}(Xn) = pn(x, y).

Therefore, PnG(·, y)(x) = G(x, y)−
∑n−1

k=0

(
PkG(·, y)(x)−Pk+1G(·, y)(x)

)
=

∑∞
k=n p

k(x, y)→ 0.

(b) (Riesz) Let f : S → R+ be superharmonic in that f ≥ Pf . Then h = limn→∞ Pnf exists pointwise
and is harmonic, and f(x) = h(x) +

∑
y G(x, y) q(y) for all x, where q = f − Pf represents charges.

Proof. The sequence f ≥ Pf ≥ P2f ≥ · · · ≥ Pnf ≥ · · · ≥ 0 admits a P-invariant limit. Next, notice
that f − Pnf =

∑n−1
k=0 P

kq =
∑n−1

k=0

∑
y p

k(·, y) q(y)↗
∑

y G(·, y) q(y).

11



Probability Exercises

5 Stationary sequences
Recall that a measurable transformation T on a measure space (S,S , µ) is said to preserve µ if µ◦T−1 = µ, and
to be ergodic for µ if all T -invariant sets are µ-trivial, i.e., µ(I)µ(I∁) = 0 for any I ∈ S such that T−1(I) = I.
A sequence ξ = (ξ0, ξ1, ξ2, . . . ) of random variables is said to be stationary if θ preserves P ◦ ξ−1, and to be
ergodic if θ is ergodic for P ◦ ξ−1, where θ : (x0, x1, . . . ) 7→ (x1, x2, . . . ) is the shift operator. We are primarily
interested in the case ξn = X ◦φ◦n for some transformation φ on (Ω,F ,P) that is P-preserving and P-ergodic.

5.1 Invariant sets and functions
Let T be a transformation on (S,S , µ) which is measure-preserving. Suppose that µ is complete.

1. (σ-algebras) I µ
T = {A ∈ S : µ(T−1(A)∆A) = 0} is the completion of IT = {I ∈ S : T−1(I) = I}.

Proof. On one hand, for A ∈ I µ
T we have C = {T−n(A) i.o.} ∈ IT such that µ(A∆C) = 0. To see this, let

B =
⋃∞

n=0 T
−n(A). Then µ(A∆B) ≤

∑∞
n=1 µ(A∆T

−n(A)) ≤
∑∞

n=1

∑n
k=1 µ(T

−(k−1)(A)∆T−k(A)) = 0,
and µ(B∆C) =

∑∞
n=1 µ(T

−(n−1)(B) \ T−n(B)) = ∞ · µ(B \ T−1(B)), where B \ T−1(B) ⊂ A \ T−1(A)
has measure zero. On the other hand, if J ∈ S satisfies that µ(J∆I) = 0 for some I ∈ IT , then
µ(T−1(J)∆J) ≤ µ(T−1(J)∆T−1(I)) + µ(I∆J) = 0.

2. f : S → R is I µ
T -measurable if and only if f ◦ T a.e.

= f , and is IT -measurable if and only if f ◦ T = f .

Proof. Denote Ia,b = f−1((a, b]) = {a < f ≤ b}. Clearly T−1(Ia,b) = {a < f ◦ T ≤ b}. Note that
{f ◦ T 6= f} =

⋃
r∈Q

(
{f ◦ T < r < f} ∪ {f < r < f ◦ T}

)
. Also, fn = 2−nb2nfc converges to f pointwise

as n→∞, of which invariance can carry over to the limit.

5.2 Criteria for ergodicity
Let ξ = (ξ1, ξ2, . . . ) be a stationary sequence.

1. Let η = (η1, η2, . . . ) where ηk = g(ξk, ξk+1, . . . ) = g◦θ◦(k−1)(ξ) for some measurable function g : R∞ → R.
Then η is also stationary. Moreover, if ξ is ergodic, then so is η.

Proof. Introduce G = (g ◦ θ◦(k−1))k=1,2,···, which satisfies that G ◦ θ = θ ◦ G. We have ξ d
= θ(ξ), so

η = G(ξ)
d
= G ◦ θ(ξ) = θ(η). For any J ∈ B∞

R such that θ−1(J) = J , called θ-invariant, I = G−1(J) is
also θ-invariant, and thus P{η ∈ J} = P{ξ ∈ I} should be either 0 or 1 as long as ξ is ergodic.

2. ξ is ergodic if and only if 1
n

∑n
i=1 1B(ξi, . . . , ξi+k−1)

a.s.−−−−→
n→∞

P{(ξ1, . . . , ξk) ∈ B}, ∀B ∈ Bk
R, ∀k = 1, 2, · · · .

Proof. Denote ν = P◦ξ−1. The stated property translates into 1
n

∑n
i=1 1B×R∞ ◦θ◦(i−1) ν-a.s.−−−→ ν(B×R∞).

In conjunction with Birkhoff’s ergodic theorem, this yields Eν [1B×R∞ |Iθ] = Eν
1B×R∞ , indicating that

B ×R∞ is independent of Iθ under ν. The “only if” part is now trivial. As for the “if” part, notice that
Iθ ⊥⊥ σ

(⋃∞
k=1{B × R∞ : B ∈ Bk

R}
)
= B∞

R ⊃ Iθ.

6 Brownian motion
6.1 Chaining and continuous modification of stochastic process

1. (Talagrand) Let X = (Xt)t∈T where T is a countable set equipped with a metric ρ such that

P{|Xt −Xs| > ε} ≤ f(ε,∆), ∀ε > 0, ∀t, s ∈ T : ρ(t, s) ≤ ∆.

For any increasing sequence {Tn}∞n=0 of subsets of T with
⋃
Tn = T , if T0 = {t0}, then

P
{
sup
t∈T
|Xt −Xt0 | >

∑
n≥1

εn

}
≤

∑
n≥1

#Tn max
s∈Tn

#{t ∈ Tn : ρ(t, s) ≤ ∆n} f(εn,∆n), ∀εn > 0,

where ∆n = 2 supt∈T ρ(t, Tn−1).

12
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Proof. Define πn(t) = argmins∈Tn
ρ(t, s), which = t for sufficiently large n. Using the relation that

Xt −Xt0 =
∑

n≥1(Xπn(t) −Xπn−1(t)), we have{
sup
t∈T
|Xt −Xt0 | >

∑
n≥1

εn

}
⊂

⋃
t∈T

⋃
n≥1

{|Xπn(t) −Xπn−1(t)| > εn} ⊂
⋃
n≥1

⋃
t,s∈Tn:ρ(t,s)≤∆n

{|Xt −Xs| > εn},

where ∆n ≥ ρ(t, Tn) + ρ(t, Tn−1) = ρ(t, πn(t)) + ρ(t, πn−1(t)) ≥ ρ(πn(t), πn−1(t)).

2. (Kolmogorov–Chentsov) Assume that X = (Xt)t∈[0,1]d admits some constants a, b,K ∈ (0,∞) for which

E |Xt −Xs|a ≤ K‖t− s‖d+b
∞ , ∀t, s ∈ [0, 1]d.

It’s immediate for 1 that f(ε,∆) = K∆d+b/εa applies when ρ(t, s) = ‖t− s‖∞, by Markov’s inequality.
Let c ∈ (0, b/a). Denote the dyadic lattice by D =

⋃
Dn where Dn = {k/2n : k = 0, 1, · · · , 2n − 1}d.

(a) The path t ∈ D 7→ Xt is Hölder continuous of order c, with probability one.

Proof. Note that if q, r ∈ D : ‖q − r‖∞ < 21−m, then there exist q0, r0 ∈ Dm : ‖q0 − r0‖∞ ≤ 2−m,
q ∈ D(q0,m) = q0 + 2−mD, r ∈ D(r0,m) = r0 + 2−mD. Hence, with L = 1 + 2/(2c − 1),⋃

q,r∈D:
∥q−r∥∞<2−M

{|Xq −Xr| > L ‖q − r‖c∞} = AM

⊂
⋃

m>M

⋃
q,r∈D:

2−m≤∥q−r∥∞<21−m

{|Xq −Xr| > L · 2−cm}

⊂
⋃

m>M

⋃
q0,r0∈Dm:

∥q0−r0∥∞≤2−m

⋃
q∈D(q0,m)

⋃
r∈D(r0,m)

 {|Xq −Xq0 | > 2−cm/(2c − 1)}
∪{|Xq0 −Xr0 | > 2−cm}
∪{|Xr0 −Xr| > 2−cm/(2c − 1)}



=
⋃

m>M

⋃
q0,r0∈Dm:

∥q0−r0∥∞≤2−m

 {|Xq0 −Xr0 | > 2−cm}
∪{supq∈D(q0,m)|Xq −Xq0 | > 2−cm

∑
n≥1 2

−cn}
∪{supr∈D(r0,m)|Xr −Xr0 | > 2−cm

∑
n≥1 2

−cn}

 ,

whose probability is bounded by∑
m>M

2dm · 3d ·
(
f(2−cm, 2−m) + 2

∑
n≥1

2dn · 9d · f(2−cm−cn, 2 · 2−m−(n−1))
)

= 3dK
∑

m>M

2(ac−b)m
(
1 + 9d21+2(d+b)

∑
n≥1

2(ac−b)n
)

≲ 2(ac−b)M .

Now
∑

P(AM ) <∞, so P(AM i.o.) = 0 by the Borel–Cantelli lemma. For ω ∈ {AM i.o.}∁ =
⋃
A∁

M ,
let

M∗(ω) = inf{M : ω ∈ A∁
M}.

∀t, s ∈ D can be connected by s = s0 ↔ s1 ↔ · · · ↔ sn = t with ‖si − si−1‖∞ < 2−M∗(ω)‖t − s‖∞
and n ≤ N(ω) = 1 + 2M∗(ω). It follows that |Xt(ω)−Xs(ω)| ≤ N(ω) · L · 2−cM∗(ω)‖t− s‖c∞.

(b) A continuous process X̃ = (X̃t)t∈[0,1]d agreeing with X on D a.s. is a modification of X.
Note that the Hölder continuity of X̃ on D extends with the same order to the entire cube [0, 1]d.

Proof. For any t ∈ [0, 1]d, choose a sequence {tn} ⊂ D with tn → t. Then X̃tn
a.s.
= Xtn . Since

X̃tn → X̃t by continuity andXtn
La

−−→ Xt, the uniqueness of limits in probability entails X̃t
a.s.
= Xt.

(c) The Brownian path is Hölder continuous of any order < 1/2, with probability one.

Proof. If Z ∼ N (0, t), then EZ2k = (2k − 1)!! · tk for every positive integer k.
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6.2 Nonsmoothness of sample path
Let B = (Bt)t≥0 be a standard Brownian motion.

1. The path t 7→ Bt is nowhere Hölder continuous of any order > 1/2, with probability one.

Proof. (Dvoretsky–Erdős–Kakutani) Fixing α > 1/2 and C > 0, it suffices to show that the event
An =

⋃
s∈[0,1]

⋂
t:|t−s|≤m/n{|Bt−Bs| ≤ C|t−s|α} has probability zero for n� 1, where m > 1/(α−1/2).

On An we have maxk<j≤k+m|Bj/n − B(j−1)/n| ≤ 2Cmα/nα for some 0 ≤ k ≤ n−m. To conclude, note
that An ↑ and that (n−m+ 1)P{|N (0, 1/n)| ≤M/nα}m ≤ n · ( 2M√

2π
n1/2−α)m ≲ n1−(α−1/2)m → 0.

2. (Paley–Wiener–Zygmund) The path t 7→ Bt is nowhere differentiable, with probability one.

6.3 Reflection principle and arcsine law
Let B = (Bt)t≥0 be a standard Brownian motion, starting from x under Px. Denote Mt = maxs≤tBs.

1. B d
= 2BT −B for any stopping time T , where BT = (Bt∧T )t≥0.

Proof. By conditioning, assume T < ∞. Then by the strong Markov property, B(T ) = (BT+t − BT )t≥0

is a standard Brownian motion starting from 0 and B(T ) ⊥⊥ (BT , T ), so (BT , T, B(T ))
d
= (BT , T,−B(T )).

Therefore, B = BT +B
(T )
(·−T )+

d
= BT −B(T )

(·−T )+ = 2BT −B.

2. Mt
d
= |Bt| for any t ≥ 0, under P0.

Proof. Using the reflection principle with Ta = inf{t : Bt = a}, we have {Mt ≥ a} = {Ta ≤ t} and hence

P0{Mt ≥ a, Bt ≤ b} = P0{2a−Bt ≤ b} = P0{N (0, t) ≥ 2a− b}, where a ≥ b ∨ 0.

Thus, P0{Mt ∈ da, Bt ≤ b} = 2√
2πt

e−(2a−b)2/(2t)
1[a≥b∨0]. Letting b← a completes the proof.

3. Recall that arcsin( ξ√
ξ2+η2

) ∼ Uniform(−π
2 ,

π
2 ) for ξ, η i.i.d.∼N (0, 1).

(a) L = sup{t ≤ 1 : Bt = 0} satisfies that P0{L < t} = 2
π arcsin

√
t for t ∈ [0, 1].

Proof. P0{L < t} = P0{maxs∈[t,1]Bs < 0}+ P0{mins∈[t,1]Bs > 0}
= P0{maxs∈[t,1](Bs −Bt) < −Bt}+ P0{−mins∈[t,1](Bs −Bt) < Bt}
= P

{√
1− t |ξ| < −

√
t η

}
+ P

{√
1− t |ξ| <

√
t η

}
= P

{√
1− t |ξ| <

√
t |η|

}
= P

{
ξ2

ξ2+η2 < t
}

= 2
π arcsin

√
t.

(b) τ = inf{t : Bt =M1} satisfies that P0{τ ≤ t} = 2
π arcsin

√
t for t ∈ [0, 1].

Proof. We have (Bt−s − Bt)s∈[0,t]
d
= (Bs − B0)s∈[0,t], and thus Mt − Bt

d
= Mt − B0. With this in

mind, P0{τ ≤ t} = P0{Mt−Bt ≥ maxs∈[t,1]Bs−Bt} = P
{√

t |η| ≥
√
1− t |ξ|

}
= P

{
ξ2

ξ2+η2 ≤ t
}

.
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