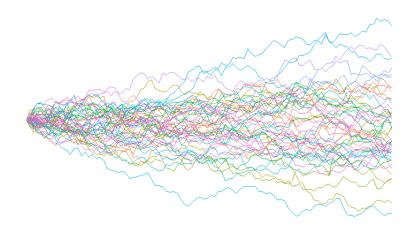
# 随机分析

授课教师: 刘勇 打字人: Lī, T.-Y.\* 2021 秋

★ 先修要求: 测度论、概率论、随机过程、微分方程



## 参考文献

- [1] I. Karatzas; S.E. Shreve. (1998). Brownian Motion and Stochastic Calculus (2nd ed.). Springer.
- [2] 龚光鲁; 钱敏平. (2019). 随机微分方程引论(第3版). 电子工业出版社.
- [3] D. Revuz; M. Yor. (2005). Continuous Martingales and Brownian Motion (3rd ed.). Springer.
- [4] K.L. Chung; R.J. Williams. (1990). *Introduction to Stochastic Integration* (2nd ed.). Birkhäuser. 龚光鲁. (2021). 钟开菜随机积分导论 第 2 版. 世界图书出版公司.
- [5] J.-F. Le Gall. (2016). Brownian Motion, Martingales, and Stochastic Calculus. Springer.
- [6] P. Medvegyev. (2007). Stochastic Integration Theory. Oxford University Press.
- [7] P.J.C. Spreij. https://staff.fnwi.uva.nl/p.j.c.spreij/onderwijs/master/si.pdf
- [8] D. Chafaï. https://djalil.chafai.net/docs/M2/m2-stochastic-calculus-course-2020-2021.pdf
- [9] R. Bauerschmidt. http://www.statslab.cam.ac.uk/~rb812/teaching/sc2020
- [10] G. Lowther. https://almostsuremath.com/stochastic-calculus

<sup>\*</sup>邮箱: kellty@pku.edu.cn



# 目录

| 0  | 引言 (2021年9月15日+22日) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                           | 1  |
|----|-----------------------------------------------------------------------------------|----|
| 1  | 基本概念 (2021 年 9 月 22 日) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                          | 2  |
| 2  | 随机过程 (2021 年 9 月 24 日) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                        | 3  |
| 3  | <b>随机过程、续</b> (2021 年 9 月 27 日)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 5  |
| 4  | 随机积分 (2021 年 9 月 29 日) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                        | 6  |
| 5  | <b>随机积分 · 互特征</b> (2021 年 10 月 11 日) · · · · · · · · · · · · · · · · · ·          | 7  |
| 6  | <b>随机积分 · 局部化</b> (2021 年 10 月 13 日) · · · · · · · · · · · · · · · · · ·          | 8  |
| 7  | ltô 公式 (2021 年 10 月 20 日)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                     | 10 |
| 8  | Brown 运动的鞅刻画 (2021 年 10 月 25 日 +27 日) · · · · · · · · · · · · · · · · · ·         | 11 |
| 9  | <b>鞅表示</b> ・Itô 积分 (2021 年 10 月 27 日) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 12 |
| 10 | <b>鞅表示·时间变换</b> (2021 年 11 月 3 日 +8 日) · · · · · · · · · · · · · · · · · ·        | 13 |
| 11 | <b>鞅表示</b> · Brown 泛函 (2021 年 11 月 8 日 +10 日) · · · · · · · · · · · · · · · · · · | 14 |
| 12 | Wiener 混沌分解 (2021 年 11 月 10 日 +17 日) · · · · · · · · · · · · · · · · · ·          | 15 |
| 13 | <b>测度变换</b> (2021 年 11 月 17 日 +22 日) · · · · · · · · · · · · · · · · · ·          | 16 |
| 14 | <b>局部时</b> · 动机 (2021 年 11 月 22 日) · · · · · · · · · · · · · · · · · ·            | 18 |
| 15 | <b>局部时</b> · Tanaka 公式 (2021 年 11 月 24 日) · · · · · · · · · · · · · · · · · ·     | 19 |
| 16 | 随机微分方程 (2021 年 12 月 1 日)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                       | 20 |
| 17 | 随机微分方程·续 (2021年12月6日+8日) · · · · · · · · · · · · · · · · · · ·                    | 21 |
| 18 | Stroock–Varadhan 鞅方法 (2021 年 12 月 8 日) · · · · · · · · · · · · · · · · · ·        | 23 |
| 19 | <b>鞅问题</b> (2021 年 12 月 15 日) · · · · · · · · · · · · · · · · · ·                 | 24 |
| 20 | <b>鞅问题·适定性</b> (2021 年 12 月 20 日) · · · · · · · · · · · · · · · · · ·             | 24 |
| 21 | <b>随机积分、带跳</b> (2021年12月15日+22日)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 24 |





### 0 引言 (2021年9月15日+22日)

#### 什么是随机分析

概率论归类于分析学. 比之微积分, 我们在随机分析中关心

- 1. 随机过程的构造: 用常见过程进行线性表示
- 2. 对鞅或半鞅的随机积分: 通过局部化推广
- 3. 随机 (偏) 微分方程
- 4. 非光滑分析: 局部时
- 5. 鞅性质在一些变换下的不变性

#### 回顾: Brown 运动, Itô 随机积分

固定概率空间  $(\Omega, \mathcal{F}, \mathbb{P})$  和滤流  $(\mathcal{F}_t)_{t\geq 0}$ . 以  $(B_t)_{t\geq 0}$  记零初值标准 Brown 运动.

**定理 0.1.** 若零初值随机过程  $(X_t)_{t\geq 0}$  具有独立平稳增量和连续轨道,则存在常数  $\sigma$  和 b,以及零初值标准 Brown 运动  $(\tilde{B}_t)_{t\geq 0}$ ,使得  $X_t = \sigma \tilde{B}_t + bt$ , $\forall t \geq 0$ .

**引理 0.2** (二次变差). 设  $0 = t_0 < t_1 < \cdots < t_m = T$ , 则

$$\mathbb{E}\left[\left|\sum_{k=1}^{m}(B_{t_k}-B_{t_{k-1}})^2-T\right|^2\right]=2\sum_{k=1}^{m}(t_k-t_{k-1})^2\leq 2\max_k(t_k-t_{k-1})T.$$

令分划加细  $(\max_k (t_k - t_{k-1}) \to 0)$  即得  $L^2$  收敛, 对于特定分划如  $2^n$ -等分  $(n \to \infty)$  有 a.s. 收敛. 注 0.3. 关键在于  $(B_t^2 - t)_{t \ge 0}$  是鞅.

定理 0.4. 以概率 — Brown 运动的轨道在任何有限区间上都不是有界变差的.

证明. 
$$\sum_{k=1}^{m} (B_{t_k} - B_{t_{k-1}})^2 \le \Xi \sum_{k=1}^{m} |B_{t_k} - B_{t_{k-1}}|$$
, 其中  $\Xi := \max_{1 \le k \le m} |B_{t_k} - B_{t_{k-1}}| \xrightarrow{\text{a.s.}} 0$ .

例 0.5  $(\int_0^T B_t dB_t)$ . 令  $s_{k-1} := (1-\alpha)t_{k-1} + \alpha t_k$ , 其中  $\alpha \in [0,1]$  是常数, 则

$$\sum_{k=1}^{m} B_{s_{k-1}} (B_{t_k} - B_{t_{k-1}}) \xrightarrow{L^2} \frac{1}{2} B_T^2 + (\alpha - \frac{1}{2}) T.$$

定义 0.6 (Itô 积分). 可料阶梯过程  $H_t = H_0 \mathbb{1}_{\{0\}}(t) + \sum_{k=1}^m H_{t_{k-1}} \mathbb{1}_{(t_{k-1},t_k]}(t)$  的 Itô 积分为

$$\int_0^T H_t \, \mathrm{d}B_t := \sum_{k=1}^m H_{t_{k-1}} (B_{t_k} - B_{t_{k-1}}).$$

一般的循序可测过程的 Itô 积分为其可料阶梯过程近似的 Itô 积分的  $L^2$  极限.

命题 0.7. Itô 积分满足: 可测、线性、可加.

**命题 0.8.** 设  $(H_t)_{t>0}$  是循序可测过程. 在适当的可积性条件下:

- $\left(\int_0^t H_s \, \mathrm{d} B_s\right)_{t \geq 0}$  是连续鞅, 特别地有:  $\mathbb{E} \int_0^t H_s \, \mathrm{d} B_s = 0$ .
- $\left((\int_0^t H_s \,\mathrm{d}B_s)^2 \int_0^t H_s^2 \,\mathrm{d}s\right)_{t>0}$  是连续鞅,特别地有  $\mathit{It\^{o}}$  等距:  $\mathbb{E}\left[(\int_0^t H_s \,\mathrm{d}B_s)^2\right] = \mathbb{E}\int_0^t H_s^2 \,\mathrm{d}s$ .
- $\left(e^{\int_0^t H_s \, \mathrm{d}B_s \frac{1}{2} \int_0^t H_s^2 \, \mathrm{d}s}\right)_{t>0}$  是连续鞅, 特别地有:  $\mathbb{E} \, e^{\int_0^t H_s \, \mathrm{d}B_s} = \mathbb{E} \, e^{\frac{1}{2} \int_0^t H_s^2 \, \mathrm{d}s}$ .



#### 随机微分方程

定理 0.9. 给定 Brown 运动  $(B_t)_{t\geq 0}$ , 考察  $\mathrm{d}X_t = \sigma(t,X_t)\,\mathrm{d}B_t + b(t,X_t)\,\mathrm{d}t$ . 若  $\sigma$  和 b 满足 Lipschitz 条件,则存在唯一的局部解  $(X_t)_{t\in [0,\epsilon]}$ ; 进一步地, 若  $\sigma$  和 b 还满足线性增长条件,则有全局解  $(X_t)_{t\geq 0}$ .

注 0.10. 与此相对地, 给定随机过程  $(X_t)_{t\geq 0}$ , 我们关心如何简单地表示  $X_t$ , 比如能否构造 Brown 运动  $(B_t)_{t\geq 0}$  使得  $\mathrm{d}X_t = \sigma(t,X_t)\,\mathrm{d}B_t + b(t,X_t)\,\mathrm{d}t$ .

### **1** 基本概念 (2021年9月22日)

定义 1.1 (随机过程相等). 两个随机过程  $(X_t)$  和  $(Y_t)$ 

- (有限维) 分布相同, 若  $(X_{t_1}, \ldots, X_{t_m}) \stackrel{d}{=} (Y_{t_1}, \ldots, Y_{t_m}), \forall t_1 < \cdots < t_m, \forall m \geq 1;$
- 互为修正, 若  $\mathbb{P}{X_t = Y_t} = 1, \forall t;$
- 不可区分, 若  $\mathbb{P}{X_t = Y_t, \forall t} = 1.$

注 1.2. 不可区分的随机过程必然互为修正. 互为修正的随机过程必然有相同的有限维分布.

**例 1.3.** 设  $(B_t)_{t\geq 0}$  是零初值标准 Brown 运动. 令  $\tilde{B}_t := B_t \mathbb{1}_{[t\neq \tau]}$ , 其中  $\tau := \inf\{t \geq 0 : |B_t| = 1\}$ . 易得  $(\tilde{B}_t)_{t\geq 0}$  和  $(B_t)_{t\geq 0}$  互为修正, 但不是不可区分的.

例 1.4. it  $\gamma(\mathrm{d}x) := \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-x^2/2} \,\mathrm{d}x$  和  $p_t(x,\mathrm{d}y) := \gamma(\mathrm{d}\frac{y-x}{\sqrt{t}})$ .

- 在  $(\mathbb{R}^{\infty}, \mathcal{B}_{\mathbb{R}}^{\infty}, \gamma^{\infty})$  上定义  $\xi_n(\omega_1, \omega_2, \dots) = \omega_n$ , 则  $\xi_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$ . 令  $X_t := \sum_{n=1}^{\infty} \sqrt{2} \frac{\sin((n \frac{1}{2})\pi t)}{(n \frac{1}{2})\pi} \xi_n$ , 则  $(X_t)_{t \in [0, 1]}$  与零初值标准 Brown 运动有限维分布相同. (Karhunen–Loève)
- 在  $C([0,1];\mathbb{R})$  上配备一致范数  $||w|| := \max_{t \in [0,1]} |w(t)|$ , 诱导拓扑及 Borel 代数. 存在概率测度  $\mathbb{P}^W$  适合  $\mathbb{P}^W \{ w \in C([0,1];\mathbb{R}) : w(t_1) \in A_1, \dots, w(t_m) \in A_m \} = \int_{A_1 \times \dots \times A_m} \prod_{k=1}^m p_{t_k t_{k-1}} (x_{k-1}, \mathrm{d}x_k),$   $\forall 0 = t_0 < t_1 < \dots < t_m \le 1, \ \forall A_1, \dots, A_m \in \mathcal{B}_{\mathbb{R}}, \ \forall m \ge 1, \ \text{其中 } x_0 = 0. \ \diamondsuit W_t(w) := w(t), \ \text{则}$   $(W_t)_{t \in [0,1]}$  是  $C([0,1];\mathbb{R})$  上的零初值标准 Brown 运动. (Wiener)

不同概率空间上的随机过程可以有相同的有限维分布, 也只能在分布上进行比较.

定义 1.5 (通常条件). 概率空间  $(\Omega, \mathcal{F}, \mathbb{P})$  上的滤流  $(\mathcal{F}_t)_{t>0}$  的通常条件指的是

- (完备) 所有 ℙ-零测集都在 ℱ₀ 中,
- (右连续)  $\mathscr{F}_t = \mathscr{F}_t^+ := \bigcap_{u > t} \mathscr{F}_u, \forall t.$

注 1.6. 滤流  $(\mathscr{F}_t^+)_{t>0}$  总是右连续的.

**定义 1.7** (停时). 给定滤流 ( $\mathscr{F}_t$ ) $_{t>0}$ , 非负随机变量  $\tau$  为

- 可选时, 若  $\{\tau < t\} \in \mathcal{F}_t, \forall t;$
- 停时, 若  $\{\tau \leq t\} \in \mathcal{F}_t, \forall t$ .

命题 1.8. 停时总是可选时. 如果滤流右连续, 那么可选时是停时.

证明. 一方面,  $\{\tau < t\} = \bigcup_{n=1}^{\infty} \{\tau \le t - \frac{1}{n}\}$ . 另一方面,  $\{\tau \le t\} = \bigcap_{n=1}^{\infty} \{\tau < t + \frac{1}{n}\}$ .



**习题 1.1** (首中时, [1]: 1.2.6, 1.2.7). 设  $(\xi_t)_{t\geq 0}$  是定义在带滤流  $(\mathscr{F}_t)_{t\geq 0}$  的概率空间上取值于完备可分度量空间 (S,d) 的轨道右连续的随机过程. 证明: 若 G 是开集,则  $\tau := \inf\{t>0: \xi_t \in G\}$  是可选时; 若  $(\xi_t)$  的轨道是连续的, F 是闭集,则  $\tau' := \inf\{t>0: \xi_t \in F\}$  是停时.

证明. 利用轨道右连续性, $\{\tau < t\} = \bigcup_{r \in (0,t) \cap \mathbb{Q}} \{\xi_r \in G\} \in \mathscr{F}_t$ . 令  $\tau_n := \inf\{t > 0 : \xi_t \in G_n\}$ ,其中  $G_n := \{x \in S : d(x,F) < \frac{1}{n}\}$  是开集. 设  $(\xi_t)_{t \geq 0}$  轨道连续,往证  $\{\tau' \leq t\} = \bigcap_{n=1}^{\infty} \{\tau_n < t\}$ . 由  $G_1 \supset G_2 \supset \cdots \supset F$  可得  $\tau_n \nearrow \tau^* \leq \tau'$ . 在  $\{\tau^* < \infty\} \subset \{\tau' < \infty\}$  上,有  $\xi_{\tau^*} \in \bigcap_{n=1}^{\infty} \overline{G_n} = F$ ,从而  $\tau' \leq \tau^*$ . 在  $\{\tau_n < \infty\} \subset \{\tau^* < \infty\}$  上,有  $\xi_{\tau_n} \in \partial G_n = \{x \in S : d(x,F) = \frac{1}{n}\}$ ,从而  $\tau_n < \tau' = \tau^*$ .

设  $X = (X_t)_{t>0}$  是轨道 a.s. 右连左极的随机过程,  $A := \{X \in [0, t_0) \perp E \notin \}$ . 证明:

**习题 1.2** ([1] 1.1.7). 如果 X 的每条轨道都是右连左极的, 那么  $A \in \mathscr{F}^X_{t_0} := \sigma(X_s: 0 \le s \le t_0)$ .

证明. 
$$A^{\complement} = \bigcup_{t \in (0,t_0)} \{ \lim_{\mathbb{Q} \ni q \nearrow t} X_q \neq \lim_{\mathbb{Q} \ni r \searrow t} X_r \}$$

$$= \bigcup_{t \in (0,t_0)} \bigcup_{n \ge 1} \{ \lim_{\mathbb{Q} \ni q \nearrow t} \lim_{\mathbb{Q} \ni r \searrow t} |X_q - X_r| > \frac{1}{n} \}$$

$$\subset \bigcup_{n \ge 1} \bigcap_{m \ge 1} \bigcup_{q,r \in (0,t_0) \cap \mathbb{Q}: |q-r| < \frac{1}{m}} \{ |X_q - X_r| > \frac{1}{n} \} \quad \in \mathscr{F}_{t_0}^X$$

$$\subset \bigcup_{n \ge 1} \bigcup_{t \in [0,t_0]} \bigcup_{(0,t_0) \ni q_j \to t} \bigcup_{(0,t_0) \ni r_j \to t} \bigcap_{j \ge 1} \{ |X_{q_j} - X_{r_j}| > \frac{1}{n} \}$$

$$= \bigcup_{t \in [0,t_0]} \{ \lim_{(0,t_0) \ni s \to t} X_s \neq \lim_{(0,t_0) \ni s \to t} X_s \} = A^{\complement}.$$

**习题 1.3** ([1] 1.1.8). 可能有  $A \notin \mathscr{F}_{t_0}^X$ . 如果 X 适应于滤流 ( $\mathscr{F}_t$ )<sub> $t \ge 0$ </sub>, 且  $\mathscr{F}_{t_0}$  完备, 那么  $A \in \mathscr{F}_{t_0}$ . 证明. 令  $C := \{X$  右连左极 $\}$ .

在  $(\Omega, \mathscr{F}) = (\mathbb{R}, \mathscr{B}_{\mathbb{R}})$  上定义  $\mathbb{P}(B) := \int_0^1 \mathbb{1}_B(\omega) \, \mathrm{d}\omega$ ,考察  $X_t(\omega) = \mathbb{1}_{[t=\omega>1]}$ ,可见  $C^{\complement} = (1,\infty)$  是  $\mathbb{P}$ -零测集.置  $t_0 = 2$ ,则有  $A^{\complement} = (1,2)$ ,而  $\mathscr{F}^X_{t_0} = \sigma\left(\left\{\{t\} : 1 < t \leq 2\right\}\right)$  只含至多可数集及其补集.

类似习题1.2可得  $A^{\mathfrak{C}} \cap C = C \cap \bigcup_{n \geq 1} \bigcap_{m \geq 1} \bigcup_{q,r \in (0,t_0) \cap \mathbb{Q}: |q-r| < \frac{1}{m}} \{|X_q - X_r| > \frac{1}{n}\}.$  若  $\mathscr{F}_{t_0}$  完备,则  $C^{\mathfrak{C}}$  和 C 都在  $\mathscr{F}_{t_0}$  中. 若还有  $\mathscr{F}_{t_0}^X \subset \mathscr{F}_{t_0}$ ,则  $A^{\mathfrak{C}} \cap C \in \mathscr{F}_{t_0}$ ,进而  $A = (A^{\mathfrak{C}} \cap C)^{\mathfrak{C}} \cap C \in \mathscr{F}_{t_0}$ .

## **2** 随机过程 (2021年9月24日)

固定概率空间  $(\Omega, \mathcal{F}, \mathbb{P})$  和满足通常条件的滤流  $(\mathcal{F}_t)_{t>0}$ .

**定义 2.1** (可测性). 设  $X = (X_t)_{t>0}$  是取值于可测空间  $(S, \Sigma)$  的随机过程. 称 X

- **可测**, 若  $(t,\omega) \in [0,\infty) \times \Omega \mapsto X_t(\omega) \in S$  是  $(\mathscr{B}_{[0,\infty)} \otimes \mathscr{F})/\Sigma$  可测映射;
- **适应**, 若  $\omega \in \Omega \mapsto X_t(\omega) \in S$  是  $\mathscr{F}_t/\Sigma$  可测映射,  $\forall t$ ;
- 循序可测, 若  $(s,\omega) \in [0,t] \times \Omega \mapsto X_s(\omega) \in S$  是  $(\mathscr{B}_{[0,t]} \otimes \mathscr{F}_t)/\Sigma$  可测映射,  $\forall t$ ;
- 可料, 若  $(t,\omega) \in [0,\infty) \times \Omega \mapsto X_t(\omega) \in S$  是  $\mathscr{P}/\Sigma$  可测映射, 其中  $\mathscr{P} := \sigma(\{[0,\infty) \times A : A \in \mathscr{F}_0\} \cup \{(s,u] \times A : A \in \mathscr{F}_s, 0 < s < u < \infty\})$  为可料  $\sigma$ -代数.

命题 2.2. 可测适应随机过程必然存在循序可测修正.



- 命题 2.3. 轨道右连续的适应随机过程必然循序可测.
- 命题 2.4. 可料随机过程必然循序可测.
- **命题 2.5.**  $\mathscr{P} = \sigma(\text{左连续适应随机过程}) = \sigma(\text{左连右极适应随机过程}) = \sigma(连续适应随机过程).$
- **定义 2.6** (平方可积鞅). 设  $M = (M_t)$  是 ( $\mathscr{F}_t$ )-鞅. 称 M **平方可积**, 若  $M_t \in L^2(\mathbb{P})$ ,  $\forall t$ . 记
  - $\mathcal{M}^2 := \{ \text{平方可积的零初值右连左极} (\mathcal{F}_t)_{t>0} \text{-} \psi \}, \, \mathcal{M}^2_{\text{cts}} := \{ M \in \mathcal{M}^2 : t \mapsto M_t \text{ 连续} \},$
  - $\mathcal{M}_{T}^{2} := \{ \mathbb{Y}$  方可积的零初值右连左极  $(\mathcal{F}_{t})_{t \in [0,T]}$  鞅 $\}, \, \mathcal{M}_{T \text{ cts}}^{2} := \{ M \in \mathcal{M}_{T}^{2} : t \mapsto M_{t}$  连续 $\},$
  - $\mathcal{M}^2_{\infty} := \{ M \in \mathcal{M}^2 : \sup_{t \geq 0} \mathbb{E} M_t^2 < \infty \}, \, \mathcal{M}^2_{\infty,\mathrm{cts}} := \mathcal{M}^2_{\infty} \cap \mathcal{M}^2_{\mathrm{cts}}.$

称  $\mathcal{M}^2_{\infty}$  中的元素为一**致平方可积鞅**.

命题 2.7.  $\mathcal{M}_{\infty}^2 = \{ (\mathbb{E}[M_{\infty}|\mathcal{F}_t])_{t\geq 0} : M_{\infty} \in L^2(\mathbb{P}), \, \mathbb{E}[M_{\infty}|\mathcal{F}_0] = 0 \}.$ 

**定理 2.8** (Doob-Meyer 分解). 设  $X = (X_t)_{t \geq 0}$  是右连左极下鞅. 若 X 满足一定条件,则存在唯一的 鞅  $M = (M_t)_{t \geq 0}$  和可料可积零初值右连续增过程  $A = (A_t)_{t \geq 0}$ , 使得 X = M + A.

定义 2.9 (补偿子). 上述分解中, A 称为 X 的补偿子.

**例 2.10.** 速率  $\lambda$  的 Poisson 过程的补偿子为  $(\lambda t)_{t>0}$ .

**定义 2.11** (尖括号过程). 对于  $M = (M_t)_{t\geq 0} \in \mathcal{M}^2$ , 称  $(M_t^2)_{t\geq 0}$  的补偿子为 M 的特征, 记作  $\langle M \rangle$ .

**例 2.12.** 设  $B = (B_t)_{t>0}$  是标准 Brown 运动,则  $\langle B \rangle_t = t$ .

定理 2.13. 设  $M \in \mathcal{M}^2_{\mathrm{cts}}$ , 则  $t \mapsto \langle M \rangle_t$  连续, 并且  $\langle M \rangle_t$  是 [0,t] 上 M 的二次变差的依概率极限.

**习题 2.1.** 证明:  $(M,N) \mapsto \mathbb{E}M_T N_T$  使  $\mathcal{M}_T^2$  成为 Hilbert 空间, 并且  $\mathcal{M}_{T,\mathrm{cts}}^2$  是  $\mathcal{M}_T^2$  的闭子空间.

证明. 不难验证内积性质,下面考虑完备性. 任取  $M^{(n)} \in \mathcal{M}_T^2$  适合  $M_T^{(m)} - M_T^{(n)} \xrightarrow{L^2(\mathbb{P})} 0$ . 利用 Doob 极大不等式, $\sup_{t \in [0,T]} |M_t^{(m)} - M_t^{(n)}| \xrightarrow{L^2(\mathbb{P})} 0$ ,进而存在  $n_1 < n_2 < \ldots$  和  $\mathbb{P}$ -零测集 D 使得  $\left\{\sup_{t \in [0,T]} |M_t^{(n_j)} - M_t^{(n_k)}| \xrightarrow{j,k \to \infty} 0\right\} \supset D^{\mathbb{C}}$ . 令  $M_t := \lim_{k \to \infty} M_t^{(n_k)} \mathbb{1}_{D^{\mathbb{C}}}$ ,则  $M = (M_t)_{t \in [0,T]}$  保持轨 道连续性,因为在  $D^{\mathbb{C}}$  上, $\sup_{u \in [0,T]} |M_u - M_u^{(n_k)}| \le \lim\inf_{j \to \infty} \sup_{t \in [0,T]} |M_t^{(n_j)} - M_t^{(n_k)}| \xrightarrow{k \to \infty} 0$ ,而  $|M_t - M_s| \le |M_t - M_t^{(n_k)}| + |M_t^{(n_k)} - M_s^{(n_k)}| + |M_t^{(n_k)} - M_s| \le |M_t^{(n_k)} - M_s^{(n_k)}| + 2\sup_{u \in [0,T]} |M_u - M_u^{(n_k)}|$ . 对任意  $t \in [0,T]$  有  $L^2(\mathbb{P})$ -  $\lim_{n \to \infty} M_t^{(n)} \xrightarrow{a.s.} \mathbb{P}$ -  $\lim_{k \to \infty} M_t^{(n_k)} = M_t$ ,这还表明 M 是平方可积鞅,因为只要  $s \le t$  就有  $\mathbb{E} M_t \mathbb{1}_A = \lim_{n \to \infty} \mathbb{E} M_t^{(n)} \mathbb{1}_A = \lim_{n \to \infty} \mathbb{E} M_s^{(n)} \mathbb{1}_A = \mathbb{E} M_s \mathbb{1}_A$ , $\forall A \in \mathscr{F}_s$ .

**习题 2.2.** 设  $N=(N_t)_{t\geq 0}$  是速率参数为  $\lambda$  的 Poisson 过程,  $\mathscr{F}_t=\mathscr{F}_t^N:=\sigma(N_s:s\leq t)$ .

1. 证明  $(N_t - \lambda t)_{t>0}$  是  $(\mathcal{F}_t)_{t>0}$ -鞅;

证明. 根据增量性质可得  $\mathbb{E}[N_t - N_s | \mathscr{F}_s] = \lambda(t-s), \forall t > s.$ 

2. 求  $((N_t - \lambda t)^2)_{t>0}$  的 Doob-Meyer 分解;

解. 记  $\tilde{N}_t := N_t - \lambda t$ . 由  $\tilde{N}_t^2 = \tilde{N}_s^2 + 2\tilde{N}_s(\tilde{N}_t - \tilde{N}_s) + (\tilde{N}_t - \tilde{N}_s)^2$ , 可得  $\mathbb{E}[\tilde{N}_t^2 | \mathscr{F}_s] - \tilde{N}_s^2 = 2\tilde{N}_s \mathbb{E}(\tilde{N}_t - \tilde{N}_s) + \operatorname{Var}(\tilde{N}_t - \tilde{N}_s) = \operatorname{Var}(N_t - N_s) = \lambda(t - s), \ \forall t > s.$ 

于是  $\langle \tilde{N} \rangle_t = \lambda t$ , 即  $(\tilde{N}_t^2 - \lambda t)_{t \geq 0}$  是  $(\mathscr{F}_t)_{t \geq 0}$ -鞅.



3. 设  $X = (X_n)_{n \geq 0}$  是 *i.i.d.* 随机变量序列,  $X_0$  可积, 且 N 与 X 独立. 令  $Y_t := \sum_{n=0}^{N_t} X_n$ , 则  $Y = (Y_t)_{t \geq 0}$  称为**复合 Poisson 过程**. 求 Y 的 Doob-Meyer 分解.

解. 令  $\mathcal{G}_t := \mathcal{F}_t^N \vee \sigma(X_{n \wedge N_t} : n \geq 0)$ ,则 Y 适应于  $(\mathcal{G}_t)_{t \geq 0}$ . 我们有  $Y_t - Y_s | \mathcal{G}_s \stackrel{d}{=} \sum_{n=1}^{N_t - N_s} X_n'$ ,其中  $(X_n')_{n \geq 0}$  是独立于  $\mathcal{G}_t$  的 X 的同分布拷贝,从而  $\mathbb{E}[Y_t - Y_s | \mathcal{G}_s] = \mathbb{E}\sum_{n=1}^{N_t - N_s} X_n' = \lambda(t-s)\mu$ , $\forall t > s$ ,其中  $\mu := \mathbb{E}X_0$ . 因此,Y 的补偿子为  $(\mu \lambda t)_{t > 0}$ ,即  $(Y_t - \mu \lambda t)_{t > 0}$  是  $(\mathcal{G}_t)_{t > 0}$ -鞅.

3 随机过程·续 (2021年9月27日)

定义 3.1 (互特征).  $\langle M, N \rangle := \frac{1}{4} (\langle M + N \rangle - \langle M - N \rangle)$  称为  $M, N \in \mathcal{M}^2$  的**互特征**. 注 3.2.  $\langle M, N \rangle = \frac{1}{2} (\langle M + N \rangle - \langle M \rangle - \langle N \rangle)$ .

**命题 3.3.**  $(M_tN_t - \langle M, N \rangle_t)_{t>0}$  是鞅,  $\forall M, N \in \mathcal{M}^2$ .

**命题 3.4.**  $(M,N) \mapsto \langle M,N \rangle$  是  $M^2$  上的正定对称双线性映射.

定义 3.5 (生成元). 半群  $(P_t)_{t\geq 0}$  的生成元为  $A:=\frac{d}{dt}\big|_{t=0+} \mathsf{P}_t,$  其中  $\mathsf{P}_t f(x):=\int P_t(x,\mathrm{d}y) f(y),$   $f\in C_b$ . 命题 3.6.  $\mathsf{AP}_t=\frac{d}{dt}\mathsf{P}_t=\mathsf{P}_t\mathsf{A},\ \forall t\geq 0.$ 

例 3.7. 转移速率矩阵为 Q 的时齐连续时间 Markov 链的生成元为  $\mathsf{A}f(x) = \sum_y Q(x,y)f(y), f \in C_b$ .

定理 3.8. 设  $(X_t)_{t\geq 0}$  是生成元为 A 的时齐 Markov 过程,则  $(f(X_t) - \int_0^t \mathsf{A} f(X_s) \, \mathrm{d} s)_{t>0}$  是鞅,  $\forall f \in C_b$ .

证明. 记 Markov 转移半群为  $(P_t)_{t\geq 0}$ , 则  $\mathbb{E}[f(X_{t+u})|\mathscr{F}_t] = \mathsf{P}_u f(X_t)$ ,  $\forall t, u \geq 0$ . 利用  $\frac{\mathrm{d}}{\mathrm{d}u}\mathsf{P}_u = \mathsf{P}_u\mathsf{A}$ , 可得  $\mathsf{P}_u f(X_t) - f(X_t) = \int_0^u \mathsf{P}_v \mathsf{A} f(X_t) \, \mathrm{d}v = \int_0^u \mathbb{E}[\mathsf{A} f(X_{t+v})|\mathscr{F}_t] \, \mathrm{d}v = \mathbb{E}[\int_0^u \mathsf{A} f(X_{t+v}) \, \mathrm{d}v|\mathscr{F}_t]$ .

**定义 3.9** (随机测度). 可测空间  $(S,\Sigma)$  上的**随机测度**指的是满足可数可加性的映射  $\Lambda: B \in \Sigma \mapsto \Lambda(B) \in \{$ 取值于  $[0,\infty]$  的随机变量 $\}$ .

**例 3.10.** 存在  $(\mathbb{R}^d, \mathscr{B}^d_{\mathbb{R}})$  上的随机测度  $\Lambda$ , 称为强度  $\lambda$  的 *Poisson* 点过程, 适合  $\Lambda(B) \sim \operatorname{Poisson}(\lambda|B|)$ , 并且只要  $B_1, \ldots, B_k$  两两不交就有  $\Lambda(B_1), \ldots, \Lambda(B_k)$  独立.

**定义 3.11** (计数过程). 对应于  $[0,\infty)$  上的非负整数值随机测度 Λ 的**计数过程**为  $N_t := \Lambda([0,t]), t \ge 0$ .

**例 3.12.** 非负随机变量  $X_1, X_2, \ldots$  决定更新过程  $N_t := \sup\{n : \sum_{i=1}^n X_i \leq t\}, t \geq 0.$ 

定义 3.13 (简单计数过程). 关于滤流  $(\mathscr{F}_t)_{t\geq 0}$  适应的计数过程  $N=(N_t)_{t\geq 0}$  称为**简单的**, 若存在循序可测随机过程  $\lambda=(\lambda_s)_{s\geq 0}$  和一列有限停时  $\tau_n\to\infty$ , 使得  $\mathbb{E}[N_{u\wedge\tau_n}-N_{t\wedge\tau_n}|\mathscr{F}_t]=\mathbb{E}[\int_{t\wedge\tau_n}^{u\wedge\tau_n}\lambda_s\,\mathrm{d} s|\mathscr{F}_t]$ ,  $\forall u\geq t\geq 0$ ,  $\forall n$ , 其中  $\lambda$  称为**随机速率**. 换言之, $(N_t-\int_0^t\lambda_s\,\mathrm{d} s)_{t\geq 0}$  是  $(\mathscr{F}_t)_{t\geq 0}$ -局部鞅.

**习题 3.1** ([1] 1.5.7). 设  $M, N \in \mathcal{M}^2$ . 证明:

1.  $\langle M, N \rangle_t^2 \leq \langle M \rangle_t \langle N \rangle_t, \ \forall t \geq 0.$ 

证明. 只需考察  $\alpha \in \mathbb{R} \mapsto \langle M \rangle_t \alpha^2 + 2 \langle M, N \rangle_t \alpha + \langle N \rangle_t = \langle \alpha M + N \rangle_t \geq 0$  的判别式.

2. 设  $V_t$  是  $[0,t] \ni u \mapsto \langle M,N \rangle_u$  的全变差, t>s, 则  $V_t-V_s \leq \frac{1}{2} \big(\langle M \rangle_t - \langle M \rangle_s + \langle N \rangle_t - \langle N \rangle_s \big)$ . 证明. 由于  $A:=\frac{1}{2}(\langle M \rangle + \langle N \rangle)$  是增过程, 只需  $|\langle M,N \rangle_t - \langle M,N \rangle_s| \leq A_t - A_s$ ,  $\forall t>s$ . 不妨置 s=0, 此时易得  $\pm \langle M,N \rangle_t \leq A_t \iff \langle M\mp N \rangle_t \geq 0$ .



**习题 3.2.** 设  $X = (X_t)_{t \geq 0}$  是一个单生过程,即其状态空间为  $\mathbb{Z}_+ := \{0,1,2,\cdots\}$ ,转移速率矩阵 Q 形如  $Q(x,y) := \lambda(x)\mathbb{1}_{[y=x+1]} - \lambda(x)\mathbb{1}_{[y=x]}$ . 进一步假定  $\sum_{x=0}^{\infty} \frac{1}{\lambda(x)} = \infty$ ,即 X 非爆炸,求 X 的 Doob-Meyer 分解并验证.

解. 作为习题3.3的特例,
$$(X_t - \int_0^t \lambda(X_s) \, \mathrm{d}s)_{t \geq 0}$$
 是鞅. ////

**习题 3.3.** 设  $X = (X_t)_{t \geq 0}$  是一个取值于  $\mathbb{Z}_+ := \{0, 1, 2, \cdots\}$  的连续时间 Markov 链, 转移速率矩阵 Q 使得 X 非爆炸. 任取  $f: \mathbb{Z}_+ \to \mathbb{R}$  适合  $\mathbb{E}|f(X_t)| < \infty$ ,  $\forall t \geq 0$ . 求  $f(X) = (f(X_t))_{t \geq 0}$  的 Doob-Meyer 分解并验证.

解. 断言  $M := (f(X_t) - \int_0^t \sum_y Q(X_s, y) f(y) ds)_{t>0}$  是鞅. 任取 u > t, 有

$$\tfrac{\mathrm{d}}{\mathrm{d}u}\mathbb{E}[f(X_u)|\mathscr{F}_t] = \tfrac{\mathrm{d}}{\mathrm{d}h}\big|_{h=0+}\mathbb{E}\big[\mathbb{E}[f(X_{u+h})|\mathscr{F}_u]\big|\mathscr{F}_t\big] = \mathbb{E}\big[\tfrac{\mathrm{d}}{\mathrm{d}h}\big|_{h=0+}\mathbb{E}[f(X_{u+h})|\mathscr{F}_u]\big|\mathscr{F}_t\big],$$

其中  $\frac{\mathrm{d}}{\mathrm{d}h}\big|_{h=0+}\mathbb{E}[f(X_{u+h})|\mathscr{F}_u] = \sum_y Q(X_u,y)f(y)$ . 即得  $\frac{\mathrm{d}}{\mathrm{d}u}\mathbb{E}[M_u|\mathscr{F}_t] = 0$ , 进而  $\mathbb{E}[M_u|\mathscr{F}_t] = M_t$ . ////

**习题 3.4.** 设  $X_1, X_2, \ldots$  是 i.i.d. 随机变量,  $\mathbb{P}\{X_1 > 0\} = 1$ . 令  $T_n := \sum_{i=1}^n X_i$  和  $N_t := \sum_{n=1}^\infty \mathbb{1}_{\{T_n \leq t\}}$ . 求  $N = (N_t)_{t \geq 0}$  的 Doob—Meyer 分解并验证. 特别地, 考虑  $X_1 = 1$  a.s. 的情况.

解. 令  $\mathcal{G}_t := \mathcal{F}_t^N \vee \sigma(T_n \wedge t : n \geq 0)$ ,则 N 适应于  $(\mathcal{G}_t)_{t \geq 0}$ . 记  $F := \mathbb{P}\{X_1 \leq \cdot\}$  的 n 次卷积为  $F^{*n}$ . 任取 t > s,有  $\mathbb{P}(T_n \leq t \,|\, \mathcal{G}_s) = \mathbb{1}_{\{n \leq N_s\}} + \mathbb{1}_{\{n > N_s\}} G_n(t;s) / [1 - F(s - T_{N_s})]$ ,其中

$$G_n(t;s) := F^{*(n-N_s)}(t-T_{N_s}) - \int_{x=0}^{s-T_{N_s}} F^{*(n-N_s-1)}(t-T_{N_s}-x) \, \mathrm{d}F(x),$$

从而  $\mathbb{E}[N_t|\mathcal{G}_s]-N_s=\sum_{n=1}^\infty\mathbbm{1}_{\{n>N_s\}}G_n(t;s)/[1-F(s-T_{N_s})]$ . 因此, N 的补偿子为  $A=(A_t)_{t\geq 0}$ , 其中

$$A_t = \sum_{n=1}^{\infty} \int_{s=0}^{t} \frac{\mathbb{1}_{\{N_s < n\}}}{1 - F(s - T_{N_s})} \, \mathrm{d}G_n(\cdot; s)|_s.$$

如果 (a.s.)  $X_1 = 1$ , 那么  $N_t = |t|$ , 此时  $A_t = |t|$ .

#### 4 随机积分 (2021年9月29日)

固定  $M = (M_t)_{t \geq 0} \in \mathcal{M}^2_{\mathrm{cts}}$ , 定义测度

$$\mu_M(A) := \int_{\Omega} \int_{t=0}^{\infty} \mathbb{1}_A(t,\omega) \, \mathrm{d}\langle M \rangle_t(\omega) \, \mathrm{d}\mathbb{P}(\omega), \quad A \in \mathscr{B}_{[0,\infty)} \otimes \mathscr{F}.$$

定义 4.1. 两个可测且适应的过程 X 和 Y 当作等价的, 若  $\mu_M\{(t,\omega): X_t(\omega) \neq Y_t(\omega)\} = 0$ .

注 4.2. 在  $\mu_M$  下等价和互为修正是没有蕴涵关系的, 因为  $\mu_M$  涉及的重积分有顺序.

定义 4.3.  $\mathcal{L}^*(M) := \bigcap_{T \in (0,\infty)} \mathcal{L}^*_T(M), \mathcal{L}^*_T(M) := \{ 循序可测 \, (X_t)_{t \geq 0} : \mathbb{E} \int_{t=0}^T X_t^2 \, \mathrm{d}\langle M \rangle_t < \infty \} / \frac{\mu_{M}\text{-a.e.}}{2}$ 

命题 4.4. 范数  $\|X\|_{\mathcal{L}^*_{T}(M)} := \sqrt{\mathbb{E} \int_{t=0}^T X_t^2 \,\mathrm{d}\langle M \rangle_t}$  使  $\mathcal{L}^*_{T}(M)/$ 轨道 $|_{(T,\infty)}$  成为 Hilbert 空间.

推论 4.5. 准范数  $||X||_{\mathcal{L}^*(M)} := \sum_{T=1}^{\infty} (1 \wedge ||X||_{\mathcal{L}^*_T(M)})/2^T$  使  $\mathcal{L}^*(M)$  成为完备度量空间.

**定义 4.6** (简单过程). 随机过程  $X = (X_t)_{t \geq 0}$  称为**简单的**, 若存在  $0 = t_0 < t_1 < t_2 < \dots$  和一致有界的  $\xi_k \in L^{\infty}(\mathscr{F}_{t_k}, \mathbb{P})$ , 使

$$X_t = \xi_0 \mathbb{1}_{\{0\}}(t) + \sum_{k=0}^{\infty} \xi_k \mathbb{1}_{(t_k, t_{k+1}]}(t), \ \forall t.$$
 (\\( \bar{\phi}\))

所有简单过程的集合记作  $\mathcal{L}_0$ .



**引理 4.7.** 设  $(A_t)_{t\geq 0}$  是适应的<u>连续</u>增过程. 若  $(X_t)_{t\geq 0}$  循序可测且  $\mathbb{E}\int_{t=0}^T X_t^2 \, \mathrm{d}A_t < \infty, \, \forall T \in [0,\infty),$ 则存在  $X^{(n)} \in \mathcal{L}_0$  使得

$$\mathbb{E} \int_{t=0}^{T} |X_t^{(n)} - X_t|^2 dA_t \xrightarrow[n \to \infty]{} 0, \ \forall T \in [0, \infty).$$

定理 4.8.  $\mathcal{L}_0$  是  $\mathcal{L}^*(M)$  的稠密子空间.

定义 4.9 (简单过程的随机积分).  $( \stackrel{\blacktriangle}{\bullet} ) \in \mathcal{L}_0$  关于 M 的**随机积分**为鞅变换

$$\int_0^t X \, dM := I_t^M(X) := \sum_{k=0}^\infty \xi_k (M_{t_{k+1} \wedge t} - M_{t_k \wedge t}), \ t \in [0, \infty).$$

命题 4.10.  $I^M:X\in\mathcal{L}_0\mapsto I^M(X):=(I^M_t(X))_{t\geq 0}\in\mathcal{M}^2_{\mathrm{cts}}$  是良定义的  $\mathbb{R}$ -线性映射.

**命题 4.11** (Itô 等距). 对  $X \in \mathcal{L}_0$ , 可得  $\left( \left( \int_0^t X \, \mathrm{d}M \right)^2 - \int_{s=0}^t X_s^2 \, \mathrm{d}\langle M \rangle_s \right)_{t \geq 0}$  是鞅. 特別地,  $\| \int X \, \mathrm{d}M \|_{\mathcal{M}^2_\infty}^2 = \mathbb{E} \left[ \left( \int_0^T X \, \mathrm{d}M \right)^2 \right] = \mathbb{E} \int_{t=0}^T X_t^2 \, \mathrm{d}\langle M \rangle_t = \| X \|_{\mathcal{L}^2_\infty(M)}^2, \ \forall T \in [0, \infty).$ 

定义 4.12 (随机积分).  $X \in \mathcal{L}^*(M)$  关于 M 的随机积分为

$$\int X \, \mathrm{d}M := I^M(X) := \mathcal{M}^2 - \lim I^M(X^{(n)}), \ \not\exists \ \vdash \mathcal{L}_0 \ni X^{(n)} \xrightarrow{\mathcal{L}^*(M)} X \ (n \to \infty).$$

定理 4.13.  $I^M: X \in \mathcal{L}^*(M) \mapsto \int X \, \mathrm{d}M \in \mathcal{M}^2_{\mathrm{cts}}$  是线性等距,且  $\langle \int X \, \mathrm{d}M \rangle = \left( \int_{s=0}^t X_s^2 \, \mathrm{d}\langle M \rangle_s \right)_{t \geq 0}$ .

**命题 4.14.** 若  $X,Y \in \mathcal{L}^*(M)$  是  $\mu_M$ -等价的,则  $\int X dM$  和  $\int Y dM$  不可区分.

证明. 对任意 T > 0 有  $\mathbb{E} \big[ (\int_0^T X \, \mathrm{d}M - \int_0^T Y \, \mathrm{d}M)^2 \big] = \| \int (X - Y) \, \mathrm{d}M \|_{\mathcal{M}_T^2}^2 = \| X - Y \|_{\mathcal{L}_T^*(M)}^2 = 0$  以及  $\mathbb{E} \big[ \max_{t \in [0,T]} (\int_0^t X \, \mathrm{d}M - \int_0^t Y \, \mathrm{d}M)^2 \big] \le 4 \, \mathbb{E} \big[ (\int_0^T X \, \mathrm{d}M - \int_0^T Y \, \mathrm{d}M)^2 \big].$ 

**习题 4.1.** 设  $M = (M_t)_{t>0} \in \mathcal{M}^2_{cts}$ . 证明:

- 1. 若  $0 \le t_0 \le t_1 < t_2$ , 且  $\xi_1 \in L^{\infty}(\mathscr{F}_{t_1})$ , 则  $\mathbb{E}[\xi_1^2(M_{t_2} M_{t_1})^2|\mathscr{F}_{t_0}] = \mathbb{E}[\xi_1^2(\langle M \rangle_{t_2} \langle M \rangle_{t_1})|\mathscr{F}_{t_0}]$ . 证明. 利用  $\mathbb{E}[(M_{t_2} M_{t_1})^2|\mathscr{F}_{t_1}] = \mathbb{E}[M_{t_2}^2|\mathscr{F}_{t_1}] M_{t_1}^2 = \mathbb{E}[\langle M \rangle_{t_2}|\mathscr{F}_{t_1}] \langle M \rangle_{t_1}$ .
- 2. 对于  $X \in \mathcal{L}^*(M)$ , 有  $\mathbb{E}[(I_t^M(X) I_s^M(X))^2 | \mathscr{F}_s] = \mathbb{E}[\int_{u=s}^t X_u^2 \, \mathrm{d}\langle M \rangle_u | \mathscr{F}_s]$  (a.s.),  $\forall t > s$ . 证明. 因为  $\mathcal{L}_0$  在  $\mathcal{L}^*(M)$  中稠密, 只需证明  $X \in \mathcal{L}_0$  的情况, 而这由前立得.

**习题 4.2** ([1] 1.5.12). 设  $X \in \mathcal{M}^2_{\mathrm{cts}}$  满足  $\langle X \rangle_{\tau} = 0$  a.s., 其中  $\tau$  是停时, 证明  $\mathbb{P}\{X_{t \wedge \tau} = 0, \ \forall t\} = 1$ . 证明. 任取 T > 0, 有  $\mathbb{E}[\max_{t \in [0,T]} X^2_{t \wedge \tau}] \le 4 \mathbb{E}[X^2_{T \wedge \tau}]$ , 而  $\mathbb{E}[X^2_{T \wedge \tau}] = \mathbb{E}\langle X \rangle_{T \wedge \tau} \le \mathbb{E}\langle X \rangle_{\tau} = 0$ .

# 5 随机积分·互特征 (2021 年 10 月 11 日)

设  $M, N \in \mathcal{M}^2_{cts}, X \in \mathcal{L}^*(M), Y \in \mathcal{L}^*(N), t \ge 0.$ 

定理 5.1 (Kunita–Watanabe).  $\int_{s=0}^t |X_s| \, |Y_s| \, |\operatorname{d}\langle M,N\rangle_s| \leq \sqrt{\int_{s=0}^t X_s^2 \, \operatorname{d}\langle M\rangle_s} \sqrt{\int_{s=0}^t Y_s^2 \, \operatorname{d}\langle N\rangle_s}.$ 

证明. 对  $\int_0^t \mathrm{d}\mu$  应用 Cauchy-Schwarz 不等式, 其中  $\mathrm{d}\mu(s) = |\mathrm{d}\langle M, N \rangle_s| + \mathrm{d}\langle M \rangle_s + \mathrm{d}\langle N \rangle_s$ .

引理 5.2.  $\langle \int X \, dM, N \rangle = \left( \int_{s=0}^t X_s \, d\langle M, N \rangle_s \right)_{t>0}$ , 亦即  $d\langle \int X \, dM, N \rangle_t = X_t \, d\langle M, N \rangle_t$ .

命题 5.3.  $\langle \int X \, \mathrm{d}M, \, \int Y \, \mathrm{d}N \rangle = \left( \int_{s=0}^t X_s Y_s \, \mathrm{d}\langle M, N \rangle_s \right)_{t \geq 0}, \,$ 亦即  $\mathrm{d}\langle \int X \, \mathrm{d}M, \, \int Y \, \mathrm{d}N \rangle_t = X_t Y_t \, \mathrm{d}\langle M, N \rangle_t.$ 



引理 5.4.  $\int X dM$  是方程  $\langle ?, N \rangle = \left( \int_{s=0}^{t} X_s d\langle M, N \rangle_s \right)_{t>0} (\forall N)$  在  $\mathcal{M}^2_{\mathrm{cts}}$  中的唯一解. (Riesz 表示)

命题 5.5. 任取停时  $\tau$ , 停止过程满足  $(\int X \,\mathrm{d}M)^{\tau} = \left(\int_{s=0}^t X_s \mathbbm{1}_{\{s \leq \tau\}} \,\mathrm{d}M_s\right)_{t>0} \stackrel{5.7}{=\!=\!=\!=} \int X^{\tau} \,\mathrm{d}(M^{\tau}).$ 

注 5.6. 第一个等号需要  $\langle (\int X \, \mathrm{d} M)^{\tau}, N \rangle = \langle \int X \, \mathrm{d} M, N \rangle^{\tau}$ . 一般地,  $\langle M^{\tau}, N \rangle = \langle M, N \rangle^{\tau}$ .

命题 5.7. 若  $N = \int X \, \mathrm{d}M$ ,则  $YX = (Y_t X_t)_{t \geq 0} \in \mathcal{L}^*(M)$  且  $\int Y \, \mathrm{d}N = \int YX \, \mathrm{d}M$ . 换言之,若  $\mathrm{d}N_t = X_t \, \mathrm{d}M_t$ ,则  $Y_t \, \mathrm{d}N_t = Y_t X_t \, \mathrm{d}M_t$ .

推论 5.8.  $\int \xi_0 X dM = \xi_0 \int X dM, \forall \xi_0 \in L^{\infty}(\mathscr{F}_0).$ 

**习题 5.1.** 设  $X, Y \in \mathcal{L}_0, M, N \in \mathcal{M}^2_{\mathrm{cts}}$ . 证明  $\langle \int X \, \mathrm{d}M, \int Y \, \mathrm{d}N \rangle_t = \int_{s=0}^t X_s Y_s \, \mathrm{d}\langle M, N \rangle_s$ .

证明. 不妨  $X_{\bullet} = \xi_0 \mathbb{1}_{\{0\}} + \sum_{k=0}^{\infty} \xi_k \mathbb{1}_{(t_k, t_{k+1}]}$  且  $Y_{\bullet} = \eta_0 \mathbb{1}_{\{0\}} + \sum_{k=0}^{\infty} \eta_k \mathbb{1}_{(t_k, t_{k+1}]}$ , 其中  $0 = t_0 < t_1 < \dots$ , 则有  $\int X \, \mathrm{d}M = \sum_{k=0}^{\infty} \xi_k (M^{t_{k+1}} - M^{t_k})$  和  $\int Y \, \mathrm{d}N = \sum_{k=0}^{\infty} \eta_k (N^{t_{k+1}} - N^{t_k})$ . 易得

$$\langle \xi_j(M^{t_{j+1}} - M^{t_j}), \, \eta_k(N^{t_{k+1}} - N^{t_k}) \rangle = \xi_k \eta_k (\langle M, N \rangle^{t_{k+1}} - \langle M, N \rangle^{t_k}) \mathbb{1}_{[j=k]}, \, \forall j, k,$$

从前  $\langle \int X \, \mathrm{d}M, \int Y \, \mathrm{d}N \rangle_t = \sum_{k=0}^{\infty} \xi_k \eta_k \int_{s=0}^t \mathbb{1}_{(t_k, t_{k+1}]}(s) \, \mathrm{d}\langle M, N \rangle_s = \int_{s=0}^t X_s Y_s \, \mathrm{d}\langle M, N \rangle_s.$ 

### 6 随机积分·局部化 (2021 年 10 月 13 日)

**定义 6.1** (局部可积). 适应的随机过程  $X = (X_t)_{t \geq 0}$  称为**局部可积的**, 若存在一列停时  $\tau_n \nearrow \infty$  (a.s.), 使得  $X^{\tau_n} = (X_{t \wedge \tau_n})_{t \geq 0}$  可积. 停时列  $\{\tau_n\}_{n=1}^{\infty}$  称为**局部化序列**, 不妨满足  $\tau_n \leq n$ .

**定义 6.2** (局部鞅). 称右连左极 (连续) 的随机过程  $M = (M_t)_{t \geq 0}$  为 **(连续) 局部 (平方可积) 鞅**, 若存在局部化序列  $\{\tau_n\}_{n=1}^{\infty}$  使得  $M^{\tau_n} = (M_{t \wedge \tau_n})_{t \geq 0}$  是 (平方可积) 鞅. 记

- $\mathcal{M}_{loc} := \{$ 零初值局部鞅 $\}, \, \mathcal{M}_{loc}^2 := \{$ 零初值局部平方可积鞅 $\},$
- M<sub>cts,loc</sub> := {零初值连续局部鞅} = {零初值连续局部平方可积鞅} ⊂ M<sup>2</sup><sub>loc</sub>.

定理 6.3. 对于  $M = (M_t)_{t \geq 0} \in \mathcal{M}^2_{loc}$ , 存在唯一的可料局部可积零初值右连续增过程  $\langle M \rangle = (\langle M \rangle_t)_{t \geq 0}$ , 称为 M 的特征, 使得  $(M_t^2 - \langle M \rangle_t)_{t \geq 0}$  是局部鞅.

证明. 利用局部化, 可得 
$$\langle M \rangle_t = \sum_{n=1}^\infty \langle M^{\tau_n} \rangle_t \mathbbm{1}_{(\tau_{n-1}, \tau_n]}(t)$$
, 其中  $\tau_0 := 0$ .

推论 6.4. 对于  $M, N \in \mathcal{M}^2_{loc}$  可以定义**互特征**  $\langle M, N \rangle$ , 并且  $\langle M, N \rangle^{\tau_n} = \langle M^{\tau_n}, N^{\tau_n} \rangle$ . 特别地,  $(M_t N_t - \langle M, N \rangle_t)_{t \geq 0}$  是局部鞅.

定义 6.5. 设  $M \in \mathcal{M}_{\mathrm{cts,loc}}$ , 令  $\mathcal{L}^*_{\mathrm{loc}}(M) := \bigcap_{T \in (0,\infty)} \{$ 循序可测  $(X_t)_{t \geq 0} : \int_{t=0}^T X_t^2 \, \mathrm{d}\langle M \rangle_t < \infty \text{ a.s.} \}.$ 

**定义 6.6** (关于局部鞅的随机积分). 对于  $M \in \mathcal{M}_{\text{cts,loc}}$  和  $X = (X_t)_{t \geq 0} \in \mathcal{L}^*_{\text{loc}}(M)$ ,可取局部化序列  $\tau_n \leq n \wedge \inf\{t : |M_t| > n\} \wedge \inf\{t : \int_{s=0}^t X_s^2 \, \mathrm{d}\langle M \rangle_s > n\}$ ,则 X 关于 M 的**随机积分**为

$$\int_0^t X \, dM := \int_0^t X^{\tau_n} \, d(M^{\tau_n}), \ 0 \le t \le \tau_n.$$

注 6.7.  $I^M: X \in \mathcal{L}^*_{loc}(M) \mapsto I^M(X) := \int X \, \mathrm{d}M := (\int_0^t X \, \mathrm{d}M)_{t \geq 0} \in \mathcal{M}_{cts,loc}$  是良定义的  $\mathbb{R}$ -线性映射.

■ 固定  $M \in \mathcal{M}_{\mathrm{cts,loc}}$  和  $X \in \mathcal{L}_{\mathrm{loc}}^*(M)$ .

命题 6.8.  $\langle \int X \, \mathrm{d}M \rangle = \left( \int_{s=0}^t X_s^2 \, \mathrm{d}\langle M \rangle_s \right)_{t \geq 0}$ .



引理 6.9.  $\langle \int X \, dM, N \rangle = \left( \int_{s=0}^t X_s \, d\langle M, N \rangle_s \right)_{t>0}, \, \forall N \in \mathcal{M}_{\text{cts,loc}}.$ 

命题 6.10.  $\langle \int X \, dM, \int Y \, dN \rangle = \left( \int_{s=0}^t X_s Y_s \, d\langle M, N \rangle_s \right)_{t>0}, \ \forall Y \in \mathcal{L}^*_{loc}(N), \ \forall N \in \mathcal{M}_{cts,loc}.$ 

引理 6.11.  $\int X dM$  是方程  $\langle ?, N \rangle = \left( \int_{s=0}^t X_s d\langle M, N \rangle_s \right)_{t>0} \ (\forall N \in \mathcal{M}^2_{\mathrm{cts}})$  在  $\mathcal{M}_{\mathrm{cts,loc}}$  中的唯一解.

**命题 6.12.** 设  $N = \int X \, \mathrm{d}M$  且  $Y \in \mathcal{L}^*_{\mathrm{loc}}(N)$ ,则  $YX = (Y_t X_t)_{t \geq 0} \in \mathcal{L}^*_{\mathrm{loc}}(M)$  且  $\int Y \, \mathrm{d}N = \int YX \, \mathrm{d}M$ .

命题 6.13.  $(\int X \, \mathrm{d}M)^{\tau} = \left(\int_{s=0}^{t} X_{s} \mathbb{1}_{\{s \leq \tau\}} \, \mathrm{d}M_{s}\right)_{t > 0} = \int X^{\tau} \, \mathrm{d}(M^{\tau})$ ,其中  $\tau$  是任意停时.

**命题 6.14.** 设  $\tau$  是停时,  $X^{(n)} \in \mathcal{L}^*_{loc}(M)$ , 则

$$\int_{t=0}^{\tau} |X_t^{(n)} - X_t|^2 d\langle M \rangle_t \xrightarrow[n \to \infty]{\mathbb{P}} 0 \implies \sup_{0 < t < \tau} |\int_0^t X^{(n)} dM - \int_0^t X dM| \xrightarrow[n \to \infty]{\mathbb{P}} 0.$$

习题 6.1 ([1] 1.5.16). 举例说明连续局部鞅不一定是鞅.

解. 考虑适应于  $\mathcal{F}_t := \sigma(B_s : 0 \le s \le \frac{t}{(1-t)^+})$  的  $M_t := B_{t/(1-t)}^{\tau} \mathbb{1}_{[0,1)}(t) - \mathbb{1}_{[1,\infty)}(t)$ , 其中 B 是零初值标准 Brown 运动,  $\tau = \inf\{t : B_t = -1\}$ . 由于  $M_0 = 0 \ne -1 = M_1$ , 可见  $M = (M_t)_{t \ge 0}$  不是鞅. 令  $\tau_n := \frac{n}{n+1} \mathbb{1}_{\{\tau > n\}} + (\frac{\tau}{\tau+1} + n) \mathbb{1}_{\{\tau \le n\}}$ , 则  $\tau_n \nearrow \infty$  (a.s.), 且

$$M_t^{\tau_n} = B_{t/(1-t)}^{\tau} \mathbb{1}_{\{\tau \le n\}} \mathbb{1}_{[0,1)}(t) + B_{t/(1-t)}^{\tau \wedge n} \mathbb{1}_{\{\tau > n\}} - \mathbb{1}_{\{\tau \le n\}} \mathbb{1}_{[1,\infty)}(t)$$

$$= B_{t/(1-t)}^{\tau \wedge n} \mathbb{1}_{[0,1)}(t) + B_{\tau \wedge n} \mathbb{1}_{[1,\infty)}(t) \qquad = \mathbb{E}[B_{\tau \wedge n} | \mathscr{F}_t].$$
 ////

**习题 6.2** ([1] 3.2.25). 对于  $M, N \in \mathcal{M}_{\mathrm{cts,loc}}$  和  $X \in \mathcal{L}^*_{\mathrm{loc}}(M) \cap \mathcal{L}^*_{\mathrm{loc}}(N)$ , 证明  $\int X \, \mathrm{d}(cM+N) = c \int X \, \mathrm{d}M + \int X \, \mathrm{d}N$ , 其中 c 是常数.

证明. 任取  $Z \in \mathcal{M}_{cts,loc}$  和  $t \geq 0$ , 有

$$\langle \int X \, \mathrm{d}(cM+N), \, Z \rangle_t = \int_{s=0}^t X_s \, \mathrm{d}\langle cM+N, Z \rangle_s$$

$$= c \int_{s=0}^t X_s \, \mathrm{d}\langle M, Z \rangle_s + \int_{s=0}^t X_s \, \mathrm{d}\langle N, Z \rangle_s$$

$$= c \langle \int X \, \mathrm{d}M, \, Z \rangle_t + \langle \int X \, \mathrm{d}N, \, Z \rangle_t = \langle c \int X \, \mathrm{d}M + \int X \, \mathrm{d}N, \, Z \rangle_t.$$

**习题 6.3** ([3] IV.1.27). 1. 设 M 和 N 是独立的连续局部鞅, 证明  $\langle M, N \rangle = 0$ .

证明. 利用局部化,不妨设 M 和 N 一致有界. 任取  $t \geq 0$ , 令  $\{t_k\}$  是 [0,t] 的分划,适合  $\max_k(t_k-t_{k-1})\to 0$ . 一方面,  $\langle M,N\rangle_t=\mathbb{P}$ -  $\lim\sum_k(M_{t_k}-M_{t_{k-1}})(N_{t_k}-N_{t_{k-1}})$ . 另一方面,

2. 设 B 是标准 Brown 运动,  $\tau$  是停时且不是常数, 证明  $B^{\tau}$  和  $B-B^{\tau}$  是不独立的连续鞅, 而  $\langle B^{\tau}, B-B^{\tau} \rangle = 0$ .

证明. 任取  $t \geq 0$ , 有  $\langle B^{\tau} \rangle_t = t \wedge \tau$  和  $\langle B - B^{\tau} \rangle_t = (t - \tau)^+$ , 从而  $\{\tau < t\} \in \sigma(B^{\tau}) \cap \sigma(B - B^{\tau})$ . 由于  $\tau$  不是常数, 可得  $B^{\tau}$  和  $B - B^{\tau}$  不独立.

注. 参看 A.S. Cherny. (2006). Some Particular Problems of Martingale Theory.

In: Yu.M. Kabanov; R.S. Liptser; J. Stoyanov. (Eds.). From Stochastic Calculus to Mathematical Finance, pp. 109–124. Springer. https://doi.org/10.1007/978-3-540-30788-4\_6



### 7 Itô 公式 (2021年10月20日)

定义 7.1 (半鞅). 称 (连续) 适应随机过程  $(X_t)$  为 **(连续) 半鞅**, 若存在分解  $X_t = X_0 + M_t + A_t$ ,  $\forall t$ , 其中  $(M_t) \in \mathcal{M}_{loc}$ , 并且  $(A_t)$  是有限变差的右连左极 (连续) 随机过程. (Bichteler–Dellacherie)

注 7.2. 有限变差过程 A 是两个增过程  $A^{\pm}$  之差, 即 Jordan 分解  $dA_t = dA_t^+ - dA_t^-, t \in [0, \infty)$ .

命题 7.3 (Fisk). 有限变差零初值连续局部鞅几乎必然为零. 特别地, 连续半鞅的分解是唯一的.

证明. 局部化之后, 应用 Doob-Meyer 分解的唯一性, 或者直接对二次变差进行放缩.

**定义 7.4.** 设 X 是半鞅, 典则分解为  $X = X_0 + M + A$ , 即  $X_t = X_0 + M_t + A_t$ ,  $\forall t$ . 约定  $\langle X \rangle := \langle M \rangle$  和  $\int \bullet \, \mathrm{d} X := \int \bullet \, \mathrm{d} M + \int_{s=0}^{t} \bullet \, \mathrm{d} A_s$ , 分别称为 X 的**特征**和**关于** X **的积分**.

定义 7.5. 两个连续半鞅 X 和 Y 的互特征为  $\langle X,Y\rangle := \frac{1}{4}(\langle X+Y\rangle - \langle X-Y\rangle)$ .

**定理 7.6** (Itô). 设  $f \in C^{1,2}([0,\infty) \times \mathbb{R}^n; \mathbb{R})$ . 对于连续半鞅  $X^i$ ,  $i = 1, 2, \dots, n$ , 有

$$f(t, X_t^1, \dots, X_t^n) = f(0, X_0^1, \dots, X_0^n) + \int_0^t \frac{\partial f}{\partial t}(s, X_s^1, \dots, X_s^n) \, \mathrm{d}s + \sum_{i=1}^n \int_{s=0}^t \frac{\partial f}{\partial x^i}(s, X_s^1, \dots, X_s^n) \, \mathrm{d}X_s^i$$
$$+ \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \int_{s=0}^t \frac{\partial^2 f}{\partial x^i \partial x^j}(s, X_s^1, \dots, X_s^n) \, \mathrm{d}\langle X^i, X^j \rangle_s,$$

简记为  $\mathrm{d}f(t,X_t) = \frac{\partial f}{\partial t}(t,X_t)\,\mathrm{d}t + \frac{\partial f}{\partial x}(t,X_t)\,\mathrm{d}X_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t,X_t)\,\mathrm{d}\langle X,X\rangle_t.$ 

证明. 分划积分区间, 逐段作二阶 Taylor 展开, 对每个求和式推导依概率收敛.

**例 7.7.** 设 B 是标准 Brown 运动, $X \in \mathcal{L}^*_{loc}(B)$ . 令  $\zeta_t := \int_0^t X \, \mathrm{d}B - \frac{1}{2} \int_0^t X_s^2 \, \mathrm{d}s$ ,则  $Z_t := \mathrm{e}^{\zeta_t}$  满足  $\mathrm{d}Z_t = Z_t X_t \, \mathrm{d}B_t$ ,即  $Z_t = 1 + \int_{s=0}^t Z_s X_s \, \mathrm{d}B_s$ .

**命题 7.8.** 设  $f \in C^{1,2}([0,\infty) \times \mathbb{R}^n; \mathbb{R})$ . 对于连续半鞅 Y 和  $X^i$ ,  $i = 1, 2, \cdots, n$ , 令  $Z_t := f(t, X_t^1, \cdots, X_t^n)$ , 则有  $\langle Z, Y \rangle_t = \sum_{i=1}^n \int_{s=0}^t \frac{\partial f}{\partial x^i}(s, X_s^1, \cdots, X_s^n) \, \mathrm{d}\langle X^i, Y \rangle_s$ .

定义 7.9 (Stratonovich 积分). 连续半鞅 Y 关于连续半鞅 X 的 Fisk-Stratonovich 积分为

$$\int Y \circ \mathrm{d} X := \int Y \, \mathrm{d} X + \tfrac{1}{2} \langle Y, X \rangle.$$

**命题 7.10.** 设 X 和 Y 是连续半鞅,  $0 = t_0 < t_1 < \cdots < t_m = T$ , 则

$$\int_0^T Y \circ dX = \mathbb{P}\text{-}\lim \sum_{k=1}^m \frac{Y_{t_{k-1}} + Y_{t_k}}{2} (X_{t_k} - X_{t_{k-1}}) \quad (\max_k (t_k - t_{k-1}) \to 0).$$

**命题 7.11.** 设  $f \in C^3(\mathbb{R}^n; \mathbb{R})$ . 对于连续半鞅  $X^i, i = 1, 2, \dots, n$ , 有

$$f(X_t^1, \cdots, X_t^n) = f(X_0^1, \cdots, X_0^n) + \sum_{i=1}^n \int_{s=0}^t \frac{\partial f}{\partial x^i}(X_s^1, \cdots, X_s^n) \circ dX_s^i$$

简记为  $\mathrm{d}f(X_t) = \frac{\partial f}{\partial x}(X_t) \circ \mathrm{d}X_t$ .

证明. 记 
$$Z_t^i := \frac{\partial f}{\partial x^i}(X_t^1, \dots, X_t^n)$$
,则有  $\langle Z^i, X^i \rangle_t = \sum_{i=1}^n \int_{s=0}^t \frac{\partial^2 f}{\partial x^i \partial x^j}(X_s^1, \dots, X_s^n) \, \mathrm{d}\langle X^j, X^i \rangle_s$ .

**习题 7.1** ([1] 3.3.3). 阅读 Itô 公式的证明.

习题 7.2 ([1]: 1.5.9, 1.5.10, 1.5.8). 掌握二次变差的放缩技巧.



**习题 7.3** (分部积分, [1] 3.3.12). 设 X 和 Y 是连续半鞅, 证明

$$\int_0^t X \, \mathrm{d}Y = X_t Y_t - X_0 Y_0 - \int_0^t Y \, \mathrm{d}X - \langle X, Y \rangle_t.$$

证明. 应用 Itô 公式, 即得  $X_tY_t = X_0Y_0 + \int_0^t X \, \mathrm{d}Y + \int_0^t Y \, \mathrm{d}X + \langle X,Y \rangle_t$ .

**习题 7.4.** 设  $B = (B_t)_{t \in [0,1]}$  是标准 Brown 运动, $X = (aB_t)_{t \in [0,1]}$ ,其中  $a \in (0,1) \cup (1,\infty)$  是常数. 证明 B 和 X 在  $(C([0,1]), \mathcal{B}_{C([0,1])})$  上诱导的测度相互奇异.

证明. 易见  $X_\#\mathbb{P}:=\mathbb{P}X^{-1}$  集中于  $A_a:=\{w\in C([0,1]): \lim_{n\to\infty}\sum_{k=1}^{2^n}|w(\frac{k}{2^n})-w(\frac{k-1}{2^n})|^2=a^2\}.$ 

#### 8 Brown 运动的鞅刻画 (2021年10月25日+27日)

**定理 8.1** (Lévy). 设  $X = (X^1, \dots, X^n) = (X_t^1, \dots, X_t^n)_{t \geq 0}$  是适应于  $(\mathscr{F}_t)_{t \geq 0}$  的零初值  $(n \ \text{$\mathfrak{4}$})$  连续局部鞅, 且  $(X^i, X^j)_t = \delta_{ij}t, \ \forall t \geq 0, \ \forall i, j \in \{1, \dots, n\}, \ \text{则} \ X \ \text{$\mathbb{E}$} \ (\mathscr{F}_t)$ -Brown 运动.

证明. 任取  $A \in \mathcal{F}_s$  和  $\lambda \in \mathbb{R}^n$ , 考虑  $\varphi(t) := \mathbb{E}[e^{\sqrt{-1}\lambda \cdot (X_t - X_s)} \mathbb{1}_A]$ ,  $t \geq s$ . 由 Itô 公式和 Fubini 定理可得  $\varphi(t) - \varphi(s) = -\frac{1}{2}|\lambda|^2 \int_s^t \varphi(u) \, \mathrm{d}u$ , 从而  $\varphi'(t) = -\frac{1}{2}|\lambda|^2 \varphi(t)$ , 解得  $\varphi(t) = e^{-\frac{1}{2}|\lambda|^2 (t-s)} \mathbb{P}(A)$ .

定义 8.2 (符号函数).  $\operatorname{sgn} := \mathbb{1}_{(0,\infty)} - \mathbb{1}_{(-\infty,0]}$ . 注意  $\operatorname{sgn}(0) = -1$ .

例 8.3. 设 B 是一维标准 Brown 运动, H 是循序可测过程, 则  $\int sgn(H) dB$  是 Brown 运动.

证明. 
$$\langle \int \operatorname{sgn}(H) dB \rangle_t = \int_{s=0}^t \operatorname{sgn}(H_s)^2 d\langle B \rangle_s = \int_0^t ds = t.$$

**例 8.4** (分支过程). • 离散情形:  $X_n = \sum_{k=1}^{X_{n-1}} \xi_{n,k}$ , 其中  $\xi_{n,k} \sim (\mu, \sigma^2)$  是 *i.i.d.* 随机变量. 易见

$$X_n - X_{n-1} = (\mu - 1)X_{n-1} + \sigma \sum_{k=1}^{X_{n-1}} (\xi_{n,k} - \mu)/\sigma.$$

• (Feller) 设  $B^1, \dots, B^n$  是独立的标准 Brown 运动, 扩散过程  $X^i$  由  $\mathrm{d}X^i_t = \alpha X^i_t \, \mathrm{d}t + \sigma \sqrt{X^i_t} \, \mathrm{d}B^i_t$  定义, 则  $S := \sum_{i=1}^n X^i$  满足

$$dS_t = \alpha S_t dt + \sigma \sqrt{S_t} dW_t,$$

其中  $W:=\sum_{i=1}^n\int \sqrt{X^i/S}\,\mathrm{d}B^i$  是一维标准 Brown 运动.

证明. 
$$\langle W \rangle_t = \sum_{i=1}^n \sum_{j=1}^n \int_{u=0}^t \frac{\sqrt{X_u^i X_u^j}}{S_u} \, \mathrm{d} \langle B^i, B^j \rangle_u = \sum_{i=1}^n \int_0^t \frac{X_u^i}{S_u} \, \mathrm{d} u = \int_0^t \mathrm{d} u = t.$$

定义 8.5 (Bessel 过程). 设  $B = (B^1, \dots, B^n)$  是 n 维标准 Brown 运动, 则  $R := |B| = \sqrt{\sum_{i=1}^n (B^i)^2}$  称为 n 维 Bessel 过程.

命题 8.6. Bessel 过程具有 Markov 性.

**命题 8.7.**  $n \geq 2$  维 Bessel 过程  $R = (R_t)_{t>0}$  满足

$$\mathrm{d}R_t = \frac{n-1}{2R_t}\,\mathrm{d}t + \mathrm{d}W_t,$$

其中  $W := \sum_{i=1}^{n} \int (B^i/R) dB^i$  是一维标准 Brown 运动.

证明. 将平方根函数在 0 附近光滑化之后再应用 Itô 公式, 取极限即得 R 满足的随机微分方程. 另一方面, 计算可得  $\langle W \rangle_t = \sum_{i=1}^n \int_0^t \frac{(B_s^i)^2}{R_s^2} \, \mathrm{d}s = t.$ 



**命题 8.8** (扩散过程的首中概率). 设  $\xi = (\xi_t)_{t\geq 0}$  满足  $d\xi_t = b(\xi_t) dt + \sigma(\xi_t) dB_t$ , 其中 B 是一维标准 Brown 运动,则  $\mathbb{P}(\xi_\tau = l \mid \xi_0 = x) = \frac{S(r) - S(x)}{S(r) - S(l)}$ ,  $\forall l \leq x \leq r$ , 其中  $\tau := \inf\{t : \xi_t \in \{l, r\}\}$ , 而  $S(x) := \int_0^x e^{-\int_0^y \frac{2b(z)}{\sigma(z)^2} dz} dy$  是常微分方程  $(\frac{1}{2}\sigma(x)^2 \frac{d^2}{dx^2} + b(x) \frac{d}{dx}) S(x) = 0$  的解.

证明. 由 Itô 公式可知  $(S(\xi_t))_{t>0}$  是连续局部鞅, 停止于  $\tau$  得到有界鞅, 故  $\mathbb{E}S(\xi_\tau) = \mathbb{E}S(\xi_0)$ .

**命题 8.9.**  $n \geq 2$  维 Bessel 过程  $R = (R_t)_{t \geq 0}$  满足  $\mathbb{P}\{R_t > 0, \ \forall t > 0\} = 1$ , 即  $\inf\{t > 0 : R_t = 0\} \stackrel{\text{a.s.}}{=} \infty$ .

证明. 只需考虑 n=2,此时  $\log R$  是局部鞅. 如果  $R_0=r>0$ ,应用可选停止定理并取极限. 如果  $R_0=0$ ,通过 Markov 性利用已有结果.

**习题 8.1** ([1] 3.3.17). 设  $B = (B^1, B^2, B^3)$  是零初值 3 维标准 Brown 运动, 定义  $X := \prod_{i=1}^3 \operatorname{sgn}(B_1^i)$ . 证明  $(B^1, B^2)$ 、 $(B^1, XB^3)$  和  $(B^2, XB^3)$  都是 2 维 Brown 运动, 但是  $(B^1, B^2, XB^3)$  不是 3 维 Brown 运动. 解释此例为何不违反 Brown 运动的鞅刻画.

证明. 由于  $X \sim \text{Uniform}(\{\pm 1\})$  独立于  $(B^1, B^3)$ , 可得  $(B^1, XB^3)$  是适应于  $(\mathscr{F}_t^{B^1} \vee \sigma(X) \vee \mathscr{F}_t^{B^3})_{t \geq 0}$  的 2 维标准 Brown 运动; 类似地,  $(B^2, XB^3)$  是适应于  $(\mathscr{F}_t^{B^2} \vee \sigma(X) \vee \mathscr{F}_t^{B^3})_{t \geq 0}$  的 2 维标准 Brown 运动. 易见  $B_1^1 B_1^2 X B_1^3 = \prod_{i=1}^3 |B_1^i| \geq 0$ , 因而  $(B^1, B^2, XB^3)$  不是 Brown 运动. 事实上, 不存在滤流使  $(B^1, B^2, XB^3)$  成为局部鞅, 也就无法应用 Brown 运动的鞅刻画.

习题 8.2. 阅读应用随机分析 (2021) 第 6.5.2 小节: 一维扩散过程的自然尺度和速度测度.

**习题 8.3** ([2] 命题 1.1). 掌握 Brown 运动的特征函数刻画.

#### 9 鞅表示·Itô 积分 (2021年10月27日)

**例 9.1.** 设  $M = (M_t)_{t \geq 0} \in \mathcal{M}_{\mathrm{cts,loc}}$ , 存在循序可测过程  $H = (H_t)_{t \geq 0}$  使得  $\langle M \rangle_t = \int_0^t H_s^2 \, \mathrm{d}s$ ,  $\forall t$ . 若 H 严格大于零, 令  $B_t := \int_{s=0}^t H_s^{-1} \, \mathrm{d}M_s$ , 则  $B = (B_t)_{t \geq 0}$  是标准 Brown 运动,且  $M = \int H \, \mathrm{d}B$ .

**定义 9.2** (扩张). 概率空间  $(\Omega, \mathscr{F}, \mathbb{P})$  扩张为  $(\Omega \times \tilde{\Omega}, \mathscr{F} \otimes \tilde{\mathscr{F}}, \mathbb{P} \otimes \tilde{\mathbb{P}})$ , 其中  $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\mathbb{P}})$  也是概率空间,则随机变量  $\omega \mapsto X(\omega)$  扩张为  $(\omega, \tilde{\omega}) \mapsto X(\omega)$ .

**定理 9.3.** 设  $M = (M^1, \dots, M^n)$  是  $(n \ \text{$\mathfrak{4}$})$  连续局部鞅,每个互特征  $\langle M^i, M^j \rangle$  都 a.s. 绝对连续,则存在扩张概率空间上的  $(n \ \text{$\mathfrak{4}$})$  标准 Brown 运动  $B = (B^1, \dots, B^n)$  和  $(n \times n \ \text{$\mathfrak{4}$})$  循序可测过程  $H = (H^i_j)_{1 \le j \le n}^{1 \le i \le n} \in \mathcal{L}^*_{loc}(B)$ ,使得  $M = M_0 + \int H \, \mathrm{d}B$ .

证明. 利用  $\sqrt{\mathrm{d}\langle M,M\rangle_t/\mathrm{d}t}$  的谱分解, 通过扩张概率空间处理特征值为零的事件.

**习题 9.1** ([1]: 3.3.21, 3.3.22, 3.4.2). 阅读证明.

**习题 9.2.** 设  $(B^1, B^2)$  是初值非零的 2 维 *Brown* 运动. 考虑  $B^1B^2$  与  $\log((B^1)^2 + (B^2)^2)$ , 判断是否是科: 如果不是, 判断是否是局部鞅.

解. 由 Itô 公式,可得  $B^1B^2 = B_0^1B_0^2 + \int B^2 dB^1 + \int B^1 dB^2$  和

$$\log\left((B^1_{\cdot \wedge \tau_n})^2 + (B^2_{\cdot \wedge \tau_n})^2\right) = \log\left((B^1_0)^2 + (B^2_0)^2\right) + \int_{s=0}^{\cdot \wedge \tau_n} \frac{2B^1_s}{(B^1_s)^2 + (B^2_s)^2} \, \mathrm{d}B^1_s + \int_{s=0}^{\cdot \wedge \tau_n} \frac{2B^2_s}{(B^1_s)^2 + (B^2_s)^2} \, \mathrm{d}B^2_s$$

是鞅, 其中  $\tau_n := \inf\{t : (B_t^1)^2 + (B_t^2)^2 \le [(B_0^1)^2 + (B_0^2)^2]/2^n\} \nearrow \infty \text{ (a.s.)},$  这也说明  $\log \left( (B^1)^2 + (B^2)^2 \right)$  是局部鞅. 而  $\mathbb{E} \log \left( (B_t^1)^2 + (B_t^2)^2 \right) \gtrsim \log t \xrightarrow[t \to \infty]{} \infty$ , 故  $\log \left( (B^1)^2 + (B^2)^2 \right)$  不是鞅. ////



**习题 9.3** (平方 Bessel 过程). 设  $X = (X_t)_{t \geq 0}$  适合  $dX_t = n dt + 2\sqrt{X_t} dB_t$ , 其中  $n \geq 1$  整数,  $B = (B_t)_{t \geq 0}$  是标准 Brown 运动. 令  $\tau_0 := \inf\{t : X_t = 0\}$ . 证明  $\mathbb{P}(\tau_0 = \infty | X_0 = x) = 1$ ,  $\forall x > 0$ .

证明. 记  $S(x) := \int^x y^{-n/2} \, \mathrm{d}y$  和  $\tau_x := \inf\{t : X_t = x\}$ ,则对于充分大的 p 和 q,命题8.8给出  $\mathbb{P}(\tau_{\frac{1}{p}} < \tau_q \, | \, X_0 = x) = \frac{S(q) - S(x)}{S(q) - S(\frac{1}{p})}$ . 令  $p \nearrow \infty$ ,即得  $\mathbb{P}(\tau_0 < \tau_q \, | \, X_0 = x) = 0$ ,因为  $n/2 \ge 1$ . 再令  $q \nearrow \infty$ ,则有  $\tau_q \nearrow \tau_\infty$ ,从而  $\mathbb{P}(\tau_0 < \tau_\infty \, | \, X_0 = x) = 0$ . 注意  $\tau_\infty \stackrel{\mathrm{a.s.}}{=} \infty$ ,因为  $\mathbb{E}X_t = \mathbb{E}X_0 + nt < \infty$ .

**习题 9.4** ([1] 3.3.23). 设  $R = (R_t)_{t>0}$  是 n 维 Bessel 过程,  $R_0 = r > 0$ . 令  $m := \inf_{t>0} R_t$ . 证明:

1. 若 n=2, 则  $m\stackrel{\text{a.s.}}{=} 0$ .

证明. 记  $\tau_x := \inf\{t : R_t = x\}$ . 任取  $a \in (0, r)$  和  $b \in (r, \infty)$ , 对  $\log R^{\tau_a}$  应用可选停止定理, 可得  $\mathbb{P}\{\tau_a < \tau_b\} \log a + \mathbb{P}\{\tau_a > \tau_b\} \log b = \mathbb{E} \log R_{\tau_a \wedge \tau_b} = \log r$ , 进而  $\mathbb{P}\{\tau_a < \tau_b\} = \frac{\log b - \log r}{\log b - \log a}$ . 令  $b \nearrow \infty$ , 则有  $\mathbb{P}\{\tau_a < \infty\} = 1$ , 于是  $m \le a$  (a.s.). 再令  $a \searrow \infty$ , 即得  $0 \le m \le 0$  (a.s.).

2. 若  $n \ge 3$ , 则  $\mathbb{P}\{m \le a\} = (a/r)^{n-2}$ ,  $\forall a \in (0, r)$ .

证明. 记  $\tau_x := \inf\{t : R_t = x\}$ . 任取  $a \in (0,r)$  和  $b \in (r,\infty)$ ,对  $(R^{2-n})^{\tau_a}$  应用可选停止定理,可得  $\mathbb{P}\{\tau_a < \tau_b\}a^{2-n} + \mathbb{P}\{\tau_a > \tau_b\}b^{2-n} = \mathbb{E}R^{2-n}_{\tau_a \wedge \tau_b} = r^{2-n}$ ,进而  $\mathbb{P}\{\tau_a < \tau_b\} = \frac{b^{2-n} - r^{2-n}}{b^{2-n} - a^{2-n}}$ . 令  $b \nearrow \infty$ ,则有  $\mathbb{P}\{m \le a\} = \mathbb{P}\{\tau_a < \infty\} = \frac{r^{2-n}}{a^{2-n}} = (a/r)^{n-2}$ .

**习题 9.5** ([1] 3.3.24). 设  $R = (R_t)_{t>0}$  是  $n \geq 3$  维 Bessel 过程. 证明  $\mathbb{P}\{\lim_{t\to\infty} R_t = \infty\} = 1$ .

证明. 任取  $K \in (0,\infty)$ , 只需证明  $\{\lim\inf_{t\to\infty}R_t \leq K\}$  是  $\mathbb{P}$ -零测集. 利用强 Markov 性, 习题9.4蕴涵  $\mathbb{P}(\inf_{t\geq T}R_t \leq K\,|\,R_T) = (K/R_T)^{n-2} \wedge 1,\,\forall T\geq 0.$  进一步地,  $\mathbb{P}\{\inf_{t\geq T}R_t \leq K\} \leq \mathbb{E}(K/\sqrt{TY})^{n-2},\,$ 其中  $Y\sim\chi_n^2$  满足  $\mathbb{E}Y^{-n/2+1}<\infty$ . 令  $T\nearrow\infty$ , 即证所欲.

### 10 **鞅表示**·时间变换 (2021年11月3日+8日)

例 10.1. 微分几何中曲线可以用弧长进行重参数化,由此可知弧长在物理上是固有时.

定理 10.2 (Dambis–Dubins–Schwarz). 设  $M \in \mathcal{M}_{\mathrm{cts,loc}}$  满足  $\langle M \rangle_{\infty} \stackrel{\mathrm{a.s.}}{=} \infty$ . 令  $\tau_s := \inf\{t : \langle M \rangle_t > s\}$ , 则  $B_s := M_{\tau_s}$  是关于滤流  $\mathscr{G}_s := \mathscr{F}_{\tau_s}$  的标准 Brown 运动. 进一步地,  $\mathbb{P}\{M_t = B_{\langle M \rangle_t}, \, \forall t\} = 1$ .

考虑一般的  $M \in \mathcal{M}_{\mathrm{cts,loc}}$ , 允许  $\mathbb{P}\{\langle M \rangle_{\infty} < \infty\} > 0$ , 那么存在扩张概率空间上的 Brown 运动  $\beta$ , 使得  $B_s := M_{\tau_s} \mathbb{1}_{\{s < \langle M \rangle_{\infty}\}} + (M_{\infty} + \beta_{s - \langle M \rangle_{\infty}}) \mathbb{1}_{\{s \geq \langle M \rangle_{\infty}\}}$  为标准 Brown 运动.

例 10.3. 设  $B = B^1 + \sqrt{-1}B^2$  是复 Brown 运动, f 是全纯函数. 令  $\tau_s := \inf\{t : \int_0^t |f'(B_r)|^2 dr > s\}$ , 则  $f(B_{\tau_\bullet})$  是复 Brown 运动.

证明. 对 M:=f(B) 应用 Itô 公式: 由 f 调和可得 M 是连续局部鞅, 由 Cauchy–Riemann 方程可得  $d\langle \operatorname{Re} M \rangle_t = d\langle \operatorname{Im} M \rangle_t = |f'(B_t)|^2 dt$  和  $\langle \operatorname{Re} M, \operatorname{Im} M \rangle = 0$ . ([5] 7.18)

**例 10.4.** 为了证明  $X_n \stackrel{d}{\to} \mathcal{N}(0,1)$ ,可尝试构造  $M^{(n)} \in \mathcal{M}_{\text{cts,loc}}$  适合  $M_1^{(n)} = X_n$ . 存在零初值标准 Brown 运动  $B^{(n)}$  使得  $M^{(n)} = B_{\langle M^{(n)} \rangle_{\bullet}}^{(n)}$ ,因此只需  $\langle M^{(n)} \rangle_1 \to 1$ .

**习题 10.1.** 设 B 是一维标准 Brown 运动,  $H \in \mathcal{L}^*_{loc}(B)$ . 证明: 若  $\langle \int H \, \mathrm{d}B \rangle$ . =  $f(\cdot)$  是严格单调递增的非随机函数,则  $\int H \, \mathrm{d}B$  是独立增量过程,并且  $\int_{u=s}^t H_u \, \mathrm{d}B_u \sim \mathcal{N}(0, f(t) - f(s)), \forall t > s$ .

证明. 由 DDS 定理10.2可知  $W := \int_0^{f^{-1}(\cdot)} H \, \mathrm{d}B$  是指标集为  $[0, f(\infty))$  的标准 Brown 运动,从而  $\int H \, \mathrm{d}B = W_{f(\cdot)}$  具有独立增量,并且  $\int_{u=s}^t H_u \, \mathrm{d}B_u = W_{f(t)} - W_{f(s)} \sim \mathcal{N}(0, f(t) - f(s))$ .



**习题 10.2.** 构造连续局部鞅  $(M_t)_{t\in[0,1]}$  使其特征为 Cantor 函数 c.

解. 设 B 为标准 Brown 运动, 则  $M := B_{c(\cdot)}$  即为所求.

-////

习题 10.3 ([3]: V.1.6, V.1.7). 阅读 DDS 定理的证明.

**习题 10.4** ([3] V.1.8). 阅读证明: 设 M 是连续局部鞅, 则  $\{\langle M \rangle_{\infty} < \infty\} \stackrel{\text{a.s.}}{=} \{\lim_{t \to \infty} M_t \text{ 存在且有限}\},$  在  $\{\langle M \rangle_{\infty} = \infty\}$  上有  $\limsup_{t \to \infty} M_t \stackrel{\text{a.s.}}{=} \infty$  和  $\liminf_{t \to \infty} M_t \stackrel{\text{a.s.}}{=} -\infty$ .

**习题 10.5** ([3] V.1.15). 设 M 是连续局部鞅, 证明在  $\{\langle M \rangle_{\infty} = \infty\}$  上有

$$\limsup_{t \to \infty} M_t / \sqrt{2\langle M \rangle_t \log \log \langle M \rangle_t} \stackrel{\text{a.s.}}{=} 1.$$

证明. 通过 DDS 定理化为 Brown 运动的重对数律.

**习题 10.6** ([3] V.1.20). 设 X 是连续半鞅, m 是 Lebesgue 测度. 证明

$$m\{t \geq 0: \limsup_{\varepsilon \searrow 0} \varepsilon^{-\alpha} |X_{t+\varepsilon} - X_t| > 0\} \stackrel{\text{a.s.}}{=} 0, \quad \forall \alpha \in (0, 1/2).$$

证明. 有限变差函数可导所以只需考虑 X 的局部鞅成分,接下来通过 DDS 定理化为 Brown 运动的 Hölder 连续性,其中用到  $\langle X \rangle_t$  关于 t 几乎处处可导.

**习题 10.7** (被积过程不是局部平方可积则无法得到良定义的 Itô 积分, [1] 3.4.11). 设 W 是标准 Brown 运动, X 是可测适应过程,  $\mathbb{P}\{\int_0^t X_s^2 \, \mathrm{d} s < \infty\} = 1$ ,  $\forall t \in [0,1)$ . 证明在  $\{\int_0^1 X_s^2 \, \mathrm{d} s = \infty\}$  上有  $\limsup_{t \nearrow 1} \int_{s=0}^t X_s \, \mathrm{d} W_s \stackrel{\mathrm{a.s.}}{=} \infty$  和  $\liminf_{t \nearrow 1} \int_{s=0}^t X_s \, \mathrm{d} W_s \stackrel{\mathrm{a.s.}}{=} -\infty$ .

证明. 令  $M_t := \int_{s=0}^{t/(1+t)} X_s \, \mathrm{d}W_s$ ,则  $\langle M \rangle_t = \int_0^{t/(1+t)} X_s^2 \, \mathrm{d}s$ . 由 DDS 定理可得标准 Brown 运动 B,使 得  $M = B_{\langle M \rangle_{\bullet}}$ ,进而  $\int_{s=0}^t X_s \, \mathrm{d}W_s = M_{t/(1-t)} = B_{\langle M \rangle_{t/(1-t)}} = B_{\int_0^t X_s^2 \, \mathrm{d}s}$ .

**习题 10.8** ([1] 3.4.12). 考虑连续半鞅 X = x + M + A, 其中初值  $x \in \mathbb{R}$  给定,  $M \in \mathcal{M}_{\text{cts,loc}}$ , 且  $A \in \mathbb{R}$  有限变差连续过程. 设存在常数  $\rho > 0$  使得 a.s. 成立  $|A_t| \vee \langle M \rangle_t \leq \rho t$ ,  $\forall t \geq 0$ . 证明对固定的 T > 0 和充分大的 n, 有  $\mathbb{P}\{\max_{t \in [0,T]} |X_t| \geq n\} \leq \exp(-\frac{n^2}{18\rho T})$ .

证明. 由 DDS 定理可得零初值标准 Brown 运动 B 使得  $M=B_{\langle M \rangle_{\bullet}}$ . 记  $m:=n-|x|-\rho T$ , 依题设可知  $\{\max_{t \in [0,T]} | X_t | \geq n\} \subset \{\max_{t \in [0,T]} | M_t | \geq m\} \subset \{\max_{t \in [0,\rho T]} | B_t | \geq m\}$ . 注意  $\max_{t \in [0,\rho T]} B_t \stackrel{d}{=} | B_{\rho T} |$ , 于是  $\mathbb{P}\{\max_{t \in [0,T]} | X_t | \geq n\} \leq 2 \mathbb{P}\{|B_{\rho T}| \geq m\} = 4 \mathbb{P}\{B_{\rho T} \geq m\} = 4(1-\Phi(\frac{m}{\sqrt{\rho T}}))$ , 其中标准正态分布 函数  $\Phi(z) := \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) \, \mathrm{d}u$  满足  $\sqrt{2\pi}(1-\Phi(z)) \leq \frac{1}{z} \exp(-\frac{z^2}{2})$ ,  $\forall z > 0$ .

**命题 10.5** (换元积分). 承定理10.2, 设  $X \in \mathcal{L}^*_{loc}(M)$ , 令  $Y_s := X_{\tau_s} \mathbb{1}_{\{s < \langle M \rangle_\infty\}}$ , 则  $Y \in \mathcal{L}^*_{loc}(B)$ , 且  $\int X \, \mathrm{d}M = \int_0^{\langle M \rangle_\bullet} Y \, \mathrm{d}B$ , 等价地有  $\int_0^{\tau_\bullet} X \, \mathrm{d}M = \int Y \, \mathrm{d}B$ .

**定理 10.6** (Knight). 设  $M=(M^1,\cdots,M^n)$  是  $(n\ \text{$\mathfrak{4}$})$  连续局部鞅,  $\langle M^i\rangle_\infty=\infty$  且  $\langle M^i,M^j\rangle=0$ ,  $\forall i\neq j.\ \diamondsuit\ \tau_s^i:=\inf\{t:\langle M^i\rangle_t>s\}$ , 则  $B_s^i:=M_{\tau_s^i}^i$  是 n 个独立的一维标准 Brown 运动.

# 11 鞅表示·Brown 泛函 (2021年11月8日+10日)

设  $B=(B^1,\cdots,B^n)$  是 (n 维) 标准 Brown 运动, 其自然滤流进行通常化扩张得到  $(\mathscr{F}_t)_{t\geq 0}$ .

**定理 11.1.** 任取  $M \in \mathcal{M}^2$ , 存在唯一的  $(n \ \text{$\mathfrak{t}$})$  过程  $H = (H^i)^{1 \le i \le n} \in \mathcal{L}^*(B)$ , 使得  $M = \sum_{i=1}^n \int H^i \, \mathrm{d}B^i$ . 特别地,  $\mathcal{M}^2 = \mathcal{M}^2_{\mathrm{cts}}$ .



推论 11.2. 任取  $\xi \in L^2(\mathscr{F}_{\infty})$ , 存在唯一的  $(n \ \mathfrak{t})$  过程  $H = (H^i)^{1 \leq i \leq n} \in \mathcal{L}^*_{\infty}(B)$ , 使得

$$\xi = \mathbb{E}[\xi|\mathscr{F}_0] + \sum_{i=1}^n \int_0^\infty H^i \, \mathrm{d}B^i.$$

例 11.3 (Clark-Ocone 公式). 当 n=1 时,对于  $f \in W^{1,2}(\mathcal{N}(0,1))$ ,令  $u(t,x) := \mathbb{E}[f(B_T) | B_t = x]$ . 将 Kolmogorov 向后方程  $\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = 0$  代入  $It\hat{o}$  公式,可得

$$f(B_T) = u(T, B_T) = u(0, B_0) + \int_{t=0}^{T} \frac{\partial u}{\partial x}(t, B_t) dB_t = \mathbb{E}[f(B_T)|\mathscr{F}_0] + \int_{t=0}^{T} \mathbb{E}[f'(B_T)|\mathscr{F}_t] dB_t.$$

**习题 11.1** ([1]: §3.4.D, §3.4.E; [2] §1.11). 阅读.

注意  $It\hat{o}$  积分表示的唯一性需要平方可积条件,否则有反例  $\int_{s=0}^{1} \mathbb{1}_{\{s \leq \tau\}} (1-s)^{-1/2} dB_s \stackrel{\text{a.s.}}{=} 0$ ,其中  $(B_s)_{s \in [0,1]}$  是一维标准 Brown 运动, $\tau := \inf\{t > 1/2 : \int_{s=0}^{t} (1-s)^{-1/2} dB_s = 0\}$ .

**习题 11.2.** 设  $B = (B_t)_{t \geq 0}$  是零初值标准 Brown 运动, $(\mathscr{F}_t)_{t \geq 0}$  是自然滤流  $(\mathscr{F}_t^B)_{t \geq 0}$  的通常化扩张. 求  $H = (H_t)_{t \geq 0} \in \mathcal{L}^*(B)$  使得  $B_1^3 = \int_0^1 H \, \mathrm{d}B$ .

解. 根据 Clark-Ocone 公式, 应取 
$$H_t = 3\mathbb{E}[B_1^2|\mathscr{F}_t] = 3(B_t^2 - t + 1), t \in [0,1].$$
 ////

**习题 11.3** ([3] V.3.16). 设  $B = (B_t)_{t \geq 0}$  是标准 Brown 运动,  $\phi : \mathbb{R} \to \mathbb{R}$  是有界的可测函数. 显式求出  $e^{\int_0^T \phi(B_s) ds}$  的  $It\hat{o}$  积分表示, 其中 T 固定. (类似 Feynman–Kac 公式)

解. 考虑  $M_t := v(t, B_t) e^{\int_0^t \phi(B_s) ds}, t \in [0, T], 其中 v \in C^{1,2}([0, T] \times \mathbb{R}; \mathbb{R})$  待定. 由 Itô 公式,

$$dM_t = e^{\int_0^t \phi(B_s) ds} dv(t, B_t) + v(t, B_t) de^{\int_0^t \phi(B_s) ds} + d\langle v(t, B_t), e^{\int_0^t \phi(B_s) ds} \rangle$$

$$= e^{\int_0^t \phi(B_s) ds} \left[ \left( \frac{\partial v}{\partial t} + \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + \phi(B_t) v \right) (t, B_t) dt + \frac{\partial v}{\partial x} (t, B_t) dB_t \right].$$

存在唯一的 v 满足  $\frac{\partial v}{\partial t}+\frac{1}{2}\frac{\partial^2 v}{\partial x^2}+\phi v=0$  和  $v(T,\boldsymbol{\cdot})\equiv 1$ , 进而

$$e^{\int_0^T \phi(B_s) ds} = M_T = M_0 + \int_0^T dM = v(0, B_0) + \int_0^T H dB,$$

其中  $H_t := e^{\int_0^t \phi(B_s) \, \mathrm{d}s} \frac{\partial v}{\partial x}(t, B_t), t \in [0, T].$ 

# 12 Wiener 混沌分解 (2021年11月10日+17日)

定义 12.1 (随机指数). 连续半鞅  $X=(X_t)_{t\geq 0}$  的 Doléans-Dade 指数为  $\mathcal{E}(X):=(\mathrm{e}^{X_t-X_0-\frac{1}{2}\langle X\rangle_t})_{t\geq 0}.$ 

**命题 12.2.** 设 X 是连续半鞅,则  $Y = Y_0 \mathcal{E}(X)$  是随机微分方程  $\mathrm{d} Y_t = Y_t \, \mathrm{d} X_t$  的唯一解.

**推论 12.3.** 设 M 是连续局部鞅,则  $\mathcal{E}(M)$  是初值为 1 的连续局部鞅,并且是上鞅. (🖙 定理13.8)

定义 12.4 (Hermite 多项式).  $H_n(x) := H_n(x,1), H_n(x,y) := \frac{\partial^n}{\partial \lambda^n}\Big|_{\lambda=0} e^{\lambda x - \frac{1}{2}\lambda^2 y}, n = 0, 1, 2, 3, \cdots$ 

**例 12.5.** 设 X 是零初值连续半鞅,则  $\mathcal{E}(\lambda X)_t = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} H_n(X_t, \langle X \rangle_t), t \geq 0, \lambda \in \mathbb{R}.$  特别地,  $M \in \mathcal{M}_{\text{cts,loc}} \implies H_n(M, \langle M \rangle) = \frac{\partial^n}{\partial \lambda^n} \Big|_{\lambda=0} \mathcal{E}(\lambda M) \in \mathcal{M}_{\text{cts,loc}}, \forall n \geq 1.$ 

**命题 12.6.** •  $H_n(x,y) = H_n(x/\sqrt{y}) y^{n/2}$ .

- $H_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}} = e^{-\frac{1}{2}(\frac{d}{dx})^2} x^n$ .
- $H'_n(x) = nH_{n-1}(x)$ .



- $H_{n+1}(x) = xH_n(x) H'_n(x)$ .
- $\int_{-\infty}^{\infty} H_m(x) H_n(x) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = n! \delta_{mn}$ .

**命题 12.7.** 设 X 是零初值连续半鞅,则  $H_n(X_t,\langle X\rangle_t)=n!\int_{t_n=0}^t\int_{t_{n-1}=0}^{t_n}\cdots\int_{t_1=0}^{t_2}\mathrm{d}X_{t_1}\ldots\mathrm{d}X_{t_{n-1}}\,\mathrm{d}X_{t_n}.$  证明. 因为  $(\frac{\partial}{\partial y}+\frac{1}{2}\frac{\partial^2}{\partial x^2})H_n(x,y)=0$ ,由 Itô 公式可得  $\mathrm{d}H_n(X_t,\langle X\rangle_t)=nH_{n-1}(X_t,\langle X\rangle_t)\,\mathrm{d}X_t.$ 

定理 12.8 (Wiener-Itô). 考虑样本空间  $\Omega := C([0,T];\mathbb{R})$ , 配备 Wiener 测度  $\mathbb{P}^W$ , 从而有零初值标准 Brown 运动  $W:(t,w)\in [0,T]\times\Omega\mapsto W_t(w):=w(t)\in\mathbb{R}$ . 此时成立正交分解

$$L^2(\mathbb{P}^W) = \bigoplus_{n=0}^{\infty} H^{\otimes_{\text{sym}} n},$$

其中  $H^{\otimes_{\text{sym}}n} := \overline{\text{span}\{H_n(\int_0^T h \, dW) : h \in L^2([0,T]), \|h\| = 1\}}$  称为 n 阶 **Wiener 混沌**.

证明. 借助特征函数可得  $\mathcal{E}(\int h \, \mathrm{d}W)_T \in \bigoplus_{n=0}^\infty H^{\otimes_{\mathrm{sym}} n}$  张成的线性子空间在  $L^2(\mathbb{P}^W)$  中稠密.

**习题 12.1** ([1] 3.3.31). 验证 Hermite 多项式的性质.

#### **13** 测度变换 (2021年11月17日+22日)

例 13.1. 考虑独立的  $X_i \sim \mathcal{N}(\mu_i, 1), \ i=1,2,\cdots,n$ . 通过

$$d\tilde{\mathbb{P}}/d\mathbb{P} = e^{-\sum_{i=1}^{n} \mu_{i} X_{i} + \frac{1}{2} \sum_{i=1}^{n} \mu_{i}^{2}} = e^{-\sum_{i=1}^{n} \mu_{i} (X_{i} - \mu_{i}) - \frac{1}{2} \sum_{i=1}^{n} \mu_{i}^{2}}$$

定义  $\tilde{\mathbb{P}}$ , 则有  $X_i \overset{\text{i.i.d.}}{\underset{\tilde{\mathbb{D}}}{\sim}} \mathcal{N}(0,1)$ .

**定理 13.2** (Girsanov). 设  $M \in \mathcal{M}_{\mathrm{cts,loc}}(\mathbb{P})$ , 并且  $\mathcal{E}(M)$  是  $\mathbb{P}$ -鞅, 则存在唯一的概率测度  $\tilde{\mathbb{P}}$  适合

$$d\tilde{\mathbb{P}}/d\mathbb{P}\big|_{\mathscr{F}_t} = \mathcal{E}(M)_t = e^{M_t - \frac{1}{2}\langle M \rangle_t}, \quad \forall t \ge 0,$$

 $([1] \ 3.5.20; \ [2] \ 定理 \ 2.12) \ 此时任取 \ N \in \mathcal{M}_{\mathrm{cts,loc}}(\mathbb{P}) \ 都有 \ N - \langle N, M \rangle \in \mathcal{M}_{\mathrm{cts,loc}}(\tilde{\mathbb{P}}).$ 

特别地, X 是  $\mathbb{P}$ -连续半鞅当且仅当 X 是  $\mathbb{P}$ -连续半鞅, 并且其特征  $\langle X \rangle$  不依赖概率测度的选取.

注 13.3. 在  $\mathscr{F}_{\infty}$  上  $\mathbb{P}$  关于  $\tilde{\mathbb{P}}$  绝对连续; 事实上,  $\mathrm{d}\mathbb{P}/\mathrm{d}\tilde{\mathbb{P}}\big|_{\mathscr{F}_t} = \mathrm{e}^{-M_t + \frac{1}{2}\langle M \rangle_t} = \mathcal{E}(\langle M \rangle - M)_t, \, \forall t \geq 0.$ 

推论 13.4. 承定理 13.2, 若  $B \in \mathbb{P}$ -Brown 运动, 则  $B - \langle B, M \rangle$  是  $\tilde{\mathbb{P}}$ -Brown 运动.

定理 13.5 (Cameron-Martin). 设 B 是  $\mathbb{P}$ -标准 Brown 运动,  $H=(H_t)_{t\geq 0}\in \mathcal{L}^*_{loc}(B)$ , 且

$$d\tilde{\mathbb{P}}/d\mathbb{P}\big|_{\mathscr{F}_t} = \mathcal{E}(\int H dB)_t = e^{\int_0^t H dB - \frac{1}{2} \int_0^t H_s^2 ds} \quad (t \ge 0)$$

是  $\mathbb{P}$ -鞅,则  $\left(B_t - \int_0^t H_s \, \mathrm{d}s\right)_{t>0}$  是  $\tilde{\mathbb{P}}$ -标准 Brown 运动.上述结果不难推广至多维.

**例 13.6.** 设  $(B_t)_{t\in[0,T]}$  是零初值标准 Brown 运动,  $f:[0,T]\to\mathbb{R}$  绝对连续, f(0)=0 且  $f'\in L^2([0,T])$ . 任取  $\varepsilon>0$ , 有  $\mathbb{P}\{\max_{t\in[0,T]}|B_t-f(t)|<\varepsilon\}>0$ .

证明. 在定理13.5中取  $H_t := f'(t)$ , 即得与  $\mathbb{P}$  相互绝对连续的  $\tilde{\mathbb{P}}$ , 使  $\tilde{B}_t := B_t - f(t) = B_t - \int_0^t f'(s) \, \mathrm{d}s$  成为  $\tilde{\mathbb{P}}$ -Brown 运动. 此时, 只需  $\tilde{\mathbb{P}}\{\max_{t \in [0,T]} | \tilde{B}_t| < \varepsilon\} > 0$ .



类似地, 多维 Brown 运动以正概率近似向量值光滑函数.



例 13.7 (Brown 运动首中时). 设  $(B_t)_{t\geq 0}$  是零初值标准 Brown 运动,  $T_b := \inf\{t \geq 0 : B_t = b\}$ ,  $b \in \mathbb{R}$ . 熟知  $\mathbb{P}\{T_b \in \mathrm{d}t\} = \frac{|b|}{\sqrt{2\pi t^3}} \mathrm{e}^{-\frac{b^2}{2t}} \, \mathrm{d}t$  和  $\mathbb{E}\,\mathrm{e}^{-aT_b} = \mathrm{e}^{-|b|\sqrt{2a}}$ ,  $a \geq 0$ . 下面考虑

$$T_b^{(\mu)} := \inf\{t \ge 0 : B_t + \mu t = b\},\$$

其中  $\mu \in \mathbb{R}$  是漂移系数. 定义概率  $\tilde{\mathbb{P}}$  适合  $d\tilde{\mathbb{P}}/d\mathbb{P}\big|_{\mathscr{F}_t} = Z_t := \mathrm{e}^{\mu B_t - \frac{1}{2}\mu^2 t}, \ \forall t \geq 0, \ \mathrm{yl} \ (B_t - \mu t)_{t \geq 0}$  是零初值  $\tilde{\mathbb{P}}$ -标准 Brown 运动. 故

$$\mathbb{P}\{T_b^{(\mu)} \le t\} = \tilde{\mathbb{P}}\{T_b \le t\} = \mathbb{E}\left[Z_t \mathbb{1}_{\{T_b \le t\}}\right] = \mathbb{E}\left[Z_{T_b} \mathbb{1}_{\{T_b \le t\}}\right] = e^{\mu b} \mathbb{E}\left[e^{-\frac{1}{2}\mu^2 T_b} \mathbb{1}_{\{T_b \le t\}}\right],$$

进而有  $\mathbb{P}\{T_b^{(\mu)} < \infty\} = \mathrm{e}^{\mu b - |\mu b|}$  和  $\mathbb{P}\{T_b^{(\mu)} \in \mathrm{d}t\} = \mathrm{e}^{\mu b - \frac{1}{2}\mu^2 t}\,\mathbb{P}\{T_b \in \mathrm{d}t\} = \frac{|b|}{\sqrt{2\pi t^3}}\mathrm{e}^{-\frac{(b-\mu t)^2}{2t}}\,\mathrm{d}t.$ 

**定理 13.8.** 设  $M = (M_t)_{t \in [0,T]} \in \mathcal{M}_{\mathrm{cts,loc}}$ , 其中  $T \in [0,\infty]$  固定, 则下述条件满足  $(1) \Rightarrow (2) \Rightarrow (3)$ .

- (1)  $\mathbb{E} e^{\frac{1}{2}\langle M \rangle_T} < \infty$ . (Novikov)
- (2)  $\sup_{\mathfrak{G} \mapsto \tau \leq T} \mathbb{E} e^{\frac{1}{2}M_{\tau}} < \infty$ , 从而  $M \in \mathcal{M}^2$ . (Kazamaki)

**习题 13.1** ([1] §3.5; [2] §1.10). 阅读.

**习题 13.2** ([2] 引理 1.9). 证明: 适应于滤流  $(\mathscr{F}_t)_{t\geq 0}$  的上鞅  $(X_t)_{t\geq 0}$  是鞅当且仅当  $\mathbb{E} X_t$  不依赖 t.

证明. 随机变量 a.s. 不等式取等当且仅当两端期望相等.

**习题 13.3** ([1] 3.5.18, [3] VIII.1.24). 设  $B = (B_t)_{t \in [0,1]}$  是零初值标准 Brown 运动,定义停时  $\tau := \inf\{t: t+B_t^2=1\}$  和随机过程  $X = (X_t)_{t \in [0,1)}$ , 其中  $X_t := -2(1-t)^{-2}B_t\mathbb{1}_{\{t \leq \tau\}}$ .

1. 证明 a.s. 有  $\tau < 1$ , 从而  $\int_0^1 X_t^2 dt < \infty$ .

证明. 由轨道连续性易见  $\tau \leq 1$ , 且

$$\mathbb{P}\{\tau=1\} \leq \mathbb{P}\{\max_{t \leq 1-\delta}(t+B_t^2) < 1\} \leq \mathbb{P}\{B_{1-\delta}^2 < \delta\} \xrightarrow{\delta \searrow 0} 0.$$

而  $X_t^2 = 4(1-t)^{-4}B_t^2\mathbb{1}_{\{t<\tau\}} \le 4(1-t)^{-3}\mathbb{1}_{\{t<\tau\}}$ ,所以  $\int_0^1 X_t^2 dt \le 4\int_0^\tau (1-t)^{-3} dt < \infty$  a.s..

2. 对  $((1-t)^{-2}B_t^2)_{t\in[0,1)}$  应用  $It\hat{o}$  公式, 得出

$$\int_0^1 X \, \mathrm{d}B - \tfrac{1}{2} \int_0^1 X_t^2 \, \mathrm{d}t = -1 - 2 \int_0^\tau [(1-t)^{-4} - (1-t)^{-3}] B_t^2 \, \mathrm{d}t \le -1.$$

证明. 直接计算,  $d((1-t)^{-2}B_t^2) = (2(1-t)^{-3}B_t^2 + (1-t)^{-2})dt + 2(1-t)^{-2}B_t dB_t$ , 从而

$$\int_0^1 X \, \mathrm{d}B = -2 \int_{t=0}^\tau (1-t)^{-2} B_t \, \mathrm{d}B_t = \int_0^\tau (2(1-t)^{-3} B_t^2 + (1-t)^{-2}) \, \mathrm{d}t - (1-\tau)^{-2} B_\tau^2$$

$$= 2 \int_0^\tau (1-t)^{-3} B_t^2 \, \mathrm{d}t + \left[ (1-\tau)^{-1} - 1 \right] - \underbrace{(1-\tau)^{-2} (1-\tau)}_{-1}.$$

结合  $\frac{1}{2} \int_0^1 X_t^2 dt = 2 \int_0^\tau (1-t)^{-4} B_t^2 dt$  即得所求.

3. 证明指数上鞅  $Z := \mathcal{E}(\int X \, \mathrm{d}B) = (\mathrm{e}^{\int_0^t X \, \mathrm{d}B - \frac{1}{2} \int_0^t X_s^2 \, \mathrm{d}s})_{t \in [0,1]}$  不是鞅,而  $Z^{\sigma_n} = (Z_{t \wedge \sigma_n})_{t \in [0,1]}$  是鞅,其中  $\sigma_n := 1 - \frac{1}{\sqrt{n}}, \, n \in \{1,2,3,\cdots\}.$ 

证明. 由于  $Z_1 \leq \mathrm{e}^{-1} < 1 = Z_0$ ,可见 Z 不是鞅. 记  $M := \int X \, \mathrm{d}B$ ,则  $Z^{\sigma_n} = \mathcal{E}(M^{\sigma_n})$ . 因为

$$\langle M^{\sigma_n} \rangle_1 = \langle M \rangle_{\sigma_n} = \int_0^{\sigma_n} X_t^2 dt \le 4 \int_0^{\sigma_n} (1-t)^{-3} dt = 2[(1-\sigma_n)^{-2} - 1] = 2n - 2 < \infty,$$

可见 Novikov 条件成立, 故  $Z^{\sigma_n}$  是鞅.



**习题 13.4** ([3] VIII.1.23). 设  $B = (B_t)_{t \geq 0}$  是零初值标准 Brown 运动,  $\tau$  是满足  $\mathbb{E} e^{\frac{1}{2}\tau} < \infty$  的停时. 证明  $\mathbb{E} e^{B_{\tau} - \frac{1}{2}\tau} = 1$ .

证明. 停止 Brown 运动  $B^{\tau} = (B_{t \wedge \tau})_{t \in [0,\infty]}$  的特征为  $\langle B^{\tau} \rangle = (t \wedge \tau)_{t \in [0,\infty]}$ , 依题意满足 Novikov 条件. 由此立得  $\mathcal{E}(B^{\tau}) = (\mathrm{e}^{B_{t \wedge \tau} - \frac{1}{2}(t \wedge \tau)})_{t \in [0,\infty]}$  是一致可积鞅, 从而  $\mathbb{E}\,\mathrm{e}^{B_{\tau} - \frac{1}{2}\tau} = \mathbb{E}\,\mathcal{E}(B^{\tau})_{\infty} = 1$ .

习题 13.5 ([3] VIII.1.36). 考虑样本空间  $\Omega := C([0,1];\mathbb{R})$ , 配备 Wiener 测度  $\mathbb{P}$  和自然滤流  $(\mathscr{F}_t)_{t \in [0,1]}$ . 取定有界可料过程  $b = (b_t)_{t \in [0,1]}$ . 对于  $\omega \in \Omega$ , 置  $\mathrm{d} \tilde{\mathbb{P}}(\omega) := \mathrm{e}^{\int_0^1 b_t(\omega) \, \mathrm{d} \omega(t) - \frac{1}{2} \int_0^1 b_t(\omega)^2 \, \mathrm{d} t} \, \mathrm{d} \mathbb{P}(\omega)$  和

$$\theta(\omega): t \in [0,1] \mapsto \omega(t) - \int_0^t b_s(\omega) \, \mathrm{d}s \in \mathbb{R}.$$

证明: 若  $(M_t)_{t \in [0,1]}$  是  $\mathbb{P}$ -(局部) 鞅, 则  $(M_t \circ \theta)_{t \in [0,1]}$  是  $\mathbb{\tilde{P}}$ -(局部) 鞅. 例如, 若  $u \in C^{1,2}([0,1] \times \mathbb{R}; \mathbb{R})$  满足  $\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = 0$ , 则  $(u(t,\theta(\cdot)(t)))_{t \in [0,1]}$  是  $\mathbb{\tilde{P}}$ -(局部) 鞅.

证明. 利用局部鞅表示定理 ([3] V.3.4), 存在常数 C 和局部平方可积可料过程  $(H_s)_{s\in[0,1]}$ , 使得

$$M_t(\omega) = C + \int_0^t H_s(\omega) d\omega(s).$$

由于  $\theta$  是可测双射, $(H_s \circ \theta)_{s \in [0,1]}$  仍是局部平方可积可料过程. 根据 Girsanov 定理, $(\theta(\cdot)(t))_{t \in [0,1]}$  是  $\tilde{\mathbb{P}}$ -Brown 运动,因此

$$M_t \circ \theta(\omega) = C + \int_0^t H_s \circ \theta(\omega) \, d\theta(\omega)(s)$$

是  $\tilde{\mathbb{P}}$ -局部鞅. 接下来只需说明可积性. 易见  $\tilde{\mathbb{P}}\theta^{-1} = \mathbb{P}$ , 因而  $\int |M_t \circ \theta| \, d\tilde{\mathbb{P}} = \int |M_t| \, d\mathbb{P}$ .

**命题 13.9** (Wiener 测度 (平移) 拟不变性). 考虑样本空间  $\Omega := C([0,T];\mathbb{R})$ , 配备 Borel 代数  $\mathcal{B}$  和 Wiener 测度  $\mathbb{P}$ , 从而有零初值标准 Brown 运动  $W:(t,w)\in [0,T]\times\Omega\mapsto W_t(w):=w(t)\in\mathbb{R}$ . 令

$$W^{(\varepsilon h)}:(t,w)\in [0,T]\times \Omega\mapsto W^{(\varepsilon h)}_t(w):=w(t)-\varepsilon\int_0^t h(s)\,\mathrm{d} s\in\mathbb{R},$$

其中  $h \in L^2([0,T]), \varepsilon \in (-1,1)$ ,则对  $A \in \mathcal{B}$  有  $\mathbb{P}\{W \in A\} = 0 \iff \mathbb{P}\{W^{(\varepsilon h)} \in A\} = 0$ .

证明. 利用定理13.5可得与  $\mathbb P$  相互绝对连续的  $\tilde{\mathbb P}^{\varepsilon}$ , 使  $W^{(\varepsilon h)}$  成为零初值  $\tilde{\mathbb P}^{\varepsilon}$ -标准 Brown 运动.  $\square$ 

特别地, 对于  $\Omega$  上的可测函数 F 和 G, 如果  $F(W) \stackrel{\text{a.s.}}{=} G(W)$ , 那么  $F(W^{(\varepsilon h)}) \stackrel{\text{a.s.}}{=} G(W^{(\varepsilon h)})$ .

命題 13.10 (Malliavin 导数).  $D_h F(W) := \frac{\partial}{\partial \varepsilon} \big|_{\varepsilon=0} F(W^{(-\varepsilon h)})$  满足  $\mathbb{E} \big[ D_h F(W) \big] = \mathbb{E} \big[ F(W) \int_{t=0}^T h(t) \, \mathrm{d}W_t \big].$ 

证明. 在 
$$\mathbb{P}$$
 下,  $F(W^{(-\varepsilon h)}) - F(W) \stackrel{d}{=} F(W)(\frac{\mathrm{d}\tilde{\mathbb{P}}^{\varepsilon}}{\mathrm{d}\mathbb{P}} - 1)$ , 且  $\frac{\partial}{\partial \varepsilon}\Big|_{\varepsilon = 0} \frac{\mathrm{d}\tilde{\mathbb{P}}^{\varepsilon}}{\mathrm{d}\mathbb{P}} = \int_{t=0}^{T} h(t) \, \mathrm{d}W_t$ .

更多内容可参看 M. Hairer. (2021+). Introduction to Malliavin Calculus.

### 14 局部时·动机 (2021年11月22日)

**例 14.1.** 在例 13.6中, $d\tilde{\mathbb{P}}/d\mathbb{P} = e^{\int_{t=0}^{T} f'(t) dB_t - \frac{1}{2} \int_{0}^{T} f'(t)^2 dt}$ . 我们有

$$\frac{\mathbb{P}\{\max_{t\in[0,T]}|B_t-f(t)|<\varepsilon\}}{\mathbb{P}\{\max_{t\in[0,T]}|B_t|<\varepsilon\}} = \frac{\mathbb{P}\{\max_{t\in[0,T]}|\tilde{B}_t|<\varepsilon\}}{\tilde{\mathbb{P}}\{\max_{t\in[0,T]}|\tilde{B}_t|<\varepsilon\}} \xrightarrow{\varepsilon\searrow 0} \left.\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\tilde{\mathbb{P}}}\right|_{\{\tilde{B}\equiv 0\}} = \mathrm{e}^{-\frac{1}{2}\int_0^T f'(t)^2\,\mathrm{d}t}.$$

**例 14.2.** 设  $B=(B_t)_{t\geq 0}$  是 (n 维) 标准 Brown 运动. 若  $B_0=0$ , 则  $B\stackrel{d}{=}(\varepsilon B_{t/\varepsilon^2})_{t\geq 0}$ ,  $\forall \varepsilon>0$ . 于是

$$\mathbb{P}(\max_{t \in [0,T]} |B_t| < \varepsilon \,|\, B_0 = 0) = \mathbb{P}(\max_{t \in [0,T/\varepsilon^2]} |B_t| < 1 \,|\, B_0 = 0) = \mathbb{P}(\sigma > T/\varepsilon^2 \,|\, B_0 = 0),$$

其中  $\sigma := \inf\{t : |B_t| \ge 1\}$ . 令  $u(t,x) := \mathbb{E}[f(B_t)\mathbb{1}_{\{\sigma > t\}} | B_0 = x]$ , 其中 f 定义于  $\{x \in \mathbb{R}^n : |x| < 1\}$ .



可得

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \Delta_x u, \ t \ge 0, \ |x| < 1, \\ u|_{t=0} = f, \ u|_{|x|=1} = 0. \end{cases}$$

设  $\phi_n$  是  $-\frac{1}{2}\Delta$  的特征函数:

$$\begin{cases} \frac{1}{2} \Delta_x \phi_n + \lambda_n \phi_n = 0, \ |x| < 1, \\ \phi_n|_{|x|=1} = 0. \end{cases}$$

则有  $u(t,x) = \sum_{n=1}^{\infty} e^{-\lambda_n t} \phi_n(x) \int_{|y|<1} \phi_n(y) f(y) dy$ , 其中  $0 < \lambda_1 < \lambda_2 < \dots$  特别地, 当  $\varepsilon \searrow 0$  时,

$$\mathbb{P}(\sigma > T/\varepsilon^2 \mid B_0 = 0) = \sum_{n=1}^{\infty} e^{-\lambda_n T/\varepsilon^2} \phi_n(0) \int_{|y| < 1} \phi_n(y) \, dy \sim e^{-\lambda_1 T/\varepsilon^2} \phi_1(0) \int_{|y| < 1} \phi_1(y) \, dy.$$

o 参看 N. Ikeda; S. Watanabe. (1989). Stochastic Differential Equations and Diffusion Processes (2nd ed.). §6.9.

例 14.3 (Brown 局部时). 对于一维标准 Brown 运动  $B=(B_t)_{t\geq 0}$ , Lévy 证明了 a.s. 存在有限的

$$L_t^a(B) := \lim_{\varepsilon \searrow 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{\{|B_s - a| < \varepsilon\}} \, \mathrm{d}s, \quad t \ge 0, \ a \in \mathbb{R}.$$

形式上,  $L_t^a(B) = \int_0^t \delta_a(B_s) ds$ , 从而适用于非光滑分析.

**习题 14.1** ([2] §4.5). 阅读.

**习题 14.2.** 设  $g \in C^1(\mathbb{R}; \mathbb{R})$  在有限个点外二阶连续可微, g'' 在不连续处左右极限存在, 并且 g'' 有界. 对于一维标准 Brown 运动  $(B_t)_{t\geq 0}$ , 证明  $g(B_t) = g(B_0) + \int_0^t g'(B) \, \mathrm{d}B + \frac{1}{2} \int_0^t g''(B_s) \, \mathrm{d}s$ .

证明. 用磨光子  $j_{\varepsilon} := \frac{1}{\varepsilon} j(\frac{1}{\varepsilon})$  与 g 作卷积得到光滑函数  $g * j_{\varepsilon}$ , 应用 Itô 公式然后令  $\varepsilon \setminus 0$ .

### 15 局部时 · Tanaka 公式 (2021 年 11 月 24 日)

**例 15.1.** 设  $B = (B_t)_{t>0}$  是一维标准 Brown 运动, 则

$$|B_t - a| = |B_0 - a| + \int_0^t \operatorname{sgn}(B - a) dB + L_t^a(B), \quad t \ge 0, \ a \in \mathbb{R}.$$

证明. 对  $g_{\varepsilon}(B) = |B - a| \mathbb{1}_{\{|B - a| > \varepsilon\}} + (\frac{(B - a)^2}{2\varepsilon} + \frac{\varepsilon}{2}) \mathbb{1}_{\{|B - a| < \varepsilon\}}$  应用习题14.2, 然后令  $\varepsilon \searrow 0$ .

类似地, 
$$\begin{cases} (B_t - a)^+ = (B_0 - a)^+ + \int_0^t \mathbb{1}_{(a,\infty)}(B) \, \mathrm{d}B + \frac{1}{2} L_t^a(B), \\ (B_t - a)^- = (B_0 - a)^- - \int_0^t \mathbb{1}_{(-\infty,a]}(B) \, \mathrm{d}B + \frac{1}{2} L_t^a(B). \end{cases}$$

**定理 15.2** (Tanaka). 设  $X=(X_t)_{t\geq 0}$  是一维连续半鞅,  $a\in\mathbb{R}$ , 则存在增过程  $L^a(X)=(L^a_t(X))_{t\geq 0}$ ,

使得对任意 
$$t \ge 0$$
 成立 
$$\begin{cases} (X_t - a)^+ = (X_0 - a)^+ + \int_0^t \mathbb{1}_{(a,\infty)}(X) \, \mathrm{d}X + \frac{1}{2} L_t^a(X), \\ (X_t - a)^- = (X_0 - a)^- - \int_0^t \mathbb{1}_{(-\infty,a]}(X) \, \mathrm{d}X + \frac{1}{2} L_t^a(X), \\ |X_t - a| = |X_0 - a| + \int_0^t \mathrm{sgn}(X - a) \, \mathrm{d}X + L_t^a(X). \end{cases}$$

**定义 15.3** (局部时). 定理15.2中  $L^a(X)$  称为 X 在水平 a 处的局部时, 且

注 15.4.  $(t,\omega,a)\mapsto L^a_t(X)(\omega)$  是  $(\mathscr{P}\otimes\mathscr{B}_{\mathbb{R}})/\mathscr{B}_{[0,\infty)}$  可测的; 特别地,  $L^a(X)$  可料,  $\forall a\in\mathbb{R}$ .

**命题 15.5.** 连续半鞅 X 的局部时  $t \mapsto L_t^a(X)$  生成的 Lebesgue-Stieltjes 测度支撑于  $\{t: X_t = a\}$ .

证明. 对  $(X-a)^2 = |X-a|^2$  两端分别应用 Itô 公式, 可得  $\int_{t=0}^T |X_t-a| \, \mathrm{d}L^a_t(X) = 0, \, \forall T > 0.$ 



**定理 15.6** (Itô-Tanaka-Meyer). 设  $X = (X_t)_{t>0}$  是连续半鞅, f 是凸函数, f' 是 f 的左导数, 则

$$f(X_t) = f(X_0) + \int_0^t f'_-(X) \, dX + \frac{1}{2} \int_{\mathbb{R}} L_t^a(X) \, df'_-(a), \quad t \ge 0.$$

**命题 15.7.** 若  $X = (X_t)_{t \geq 0}$  是连续半鞅,则  $L_t^a(X)$  关于 t 连续且关于 a 右连左极. 进一步地, 若  $M = (M_t)_{t \geq 0}$  是连续鞅,则  $L_t^a(M)$  关于 t 和 a 均连续.

**定理 15.8** (占位时). 设  $X = (X_t)_{t>0}$  是连续半鞅,  $g: \mathbb{R} \to \mathbb{R}$  是有界可测函数, 则

$$\int_{s=0}^{t} g(X_s) \, \mathrm{d}\langle X \rangle_s = \int_{\mathbb{R}} g(a) L_t^a(X) \, \mathrm{d}a, \quad \forall t \ge 0.$$

推论 15.9. 连续半鞅  $X=(X_t)_{t\geq 0}$  的局部时满足  $L^a_t(X)=\lim_{\varepsilon\searrow 0}\frac{1}{\varepsilon}\int_{s=0}^t\mathbb{1}_{[a,a+\varepsilon)}(X_s)\,\mathrm{d}\langle X\rangle_s.$  进一步地, 连续鞅  $M=(M_t)_{t\geq 0}$  的局部时满足  $L^a_t(M)=\lim_{\varepsilon\searrow 0}\frac{1}{2\varepsilon}\int_{s=0}^t\mathbb{1}_{[a-\varepsilon,a+\varepsilon)}(M_s)\,\mathrm{d}\langle M\rangle_s.$ 

**习题 15.1** ([2]: §2.8, §2.9; [1]: §3.6, §3.7). 阅读. 注意 [1] 中的局部时额外乘了系数  $\frac{1}{2}$ .

**习题 15.2** ([2] 引理 2.26; [1]: 3.6.12, 3.7.7). 阅读证明 Fubini 型定理:

设  $M=(M_t)_{t\geq 0}\in \mathcal{M}^2_{\mathrm{loc}}, \, \mu$  是  $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$  上  $\sigma$ -有限测度, $(\Phi^x_t)_{t\geq 0}^{x\in\mathbb{R}}$  是随机场,且  $(t,\omega,x)\mapsto \Phi^x_t(\omega)$  是  $(\mathcal{P}\otimes\mathcal{B}_{\mathbb{R}})/\mathcal{B}_{\mathbb{R}}$  可测的.若存在  $f\in L^1(\mu)$  使得  $\forall x\in\mathbb{R}$  都有  $\sup_{t,\omega}|\Phi^x_t(\omega)|\leq f(x)$ ,且  $\forall T\geq 0$  都有  $(\omega,x)\mapsto \int_{t=0}^T\Phi^x_t\,\mathrm{d}M_t$  可测,则  $\left(\int_{\mathbb{R}}\Phi^x_t\,\mathrm{d}\mu(x)\right)_{t>0}\in\mathcal{L}^*_{\mathrm{loc}}(M)$ ,且

$$\int_{t=0}^T \left( \int_{\mathbb{R}} \Phi_t^x \, \mathrm{d}\mu(x) \right) \mathrm{d}M_t = \int_{\mathbb{R}} \left( \int_{t=0}^T \Phi_t^x \, \mathrm{d}M_t \right) \mathrm{d}\mu(x), \quad T \ge 0.$$

**习题 15.3.** 证明连续有限变差过程  $X = (X_t)_{t>0}$  的局部时恒为零.

证明. 
$$\int_0^t \operatorname{sgn}(X-a) \, \mathrm{d}X = \int_{s=0}^t \operatorname{sgn}(X_s-a) \, \mathrm{d}X_s = \int_{s=0}^t \mathrm{d}|X_s-a| = |X_t-a| - |X_0-a|, \, \forall a \in \mathbb{R}.$$

局部时·应用 (2021年12月1日)

**引理 15.10** (Skorokhod). 设  $y:[0,\infty)\to\mathbb{R}$  连续,  $y(0)\geq 0$ , 则存在唯一的  $x:[0,\infty)\to[0,\infty)$  和  $a:[0,\infty)\to[0,\infty)$ ,使得 x=y+a,且 a 零初值、连续、递增、生成的 Lebesgue-Stieltjes 测度支撑于  $\{t:x(t)=0\}$ . 事实上,  $a(t)=0 \vee \max_{s\in[0,t]}\{-y(s)\}$ .

Credit: Y.-F. CHEN

推论 15.11. 设 B 是零初值一维标准 Brown 运动,则  $L_t^0(B) = \max_{s \in [0,t]} \beta_s$ ,其中  $\beta := -\int \operatorname{sgn}(B) dB$  也是零初值一维标准 Brown 运动 (例 8.3).

定理 15.12 (Lévy). 设  $B=(B_t)_{t\geq 0}$  是零初值一维标准 Brown 运动,  $M_t:=\max_{s\in [0,t]}B_s$ , 则

$$(M_t - B_t, M_t)_{t \ge 0} \stackrel{d}{=} (|B_t|, L_t^0(B))_{t \ge 0}.$$

### **16** 随机微分方程 (2021年12月1日)

设  $B = (B_t)_{t>0}$  是  $(n \ \text{$\mathfrak{4}$})$  标准 Brown 运动, 考虑  $(m \ \text{$\mathfrak{4}$})$  扩散过程  $X = (X_t)_{t>0}$  满足

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t,$$
(SDE)

-y(t)



其中称  $b=(b^i)^{1\leq i\leq m}:[0,\infty)\times\mathbb{R}^m\to\mathbb{R}^m$  为漂移系数,  $\sigma=(\sigma^i_j)^{1\leq i\leq m}_{1\leq j\leq n}:[0,\infty)\times\mathbb{R}^m\to\mathbb{R}^{m\times n}$  为弥散系数. 定义  $a=(a^{ik})^{1\leq i,k\leq m}:=\sigma\sigma^\top=(\sum_{j=1}^n\sigma^i_j\sigma^k_j)^{1\leq i,k\leq m}:[0,\infty)\times\mathbb{R}^m\to\mathbb{R}^{m\times m},$  称为扩散系数.

**定义 16.1** (强解). 连续适应随机过程  $X = (X_t)_{t>0}$  称为(SDE)的**强解**, 若

- $(b(t, X_t))_{t\geq 0} \in \mathcal{L}^1_{loc}([0, \infty)) := \{ \underline{i} \underline{b} \underline{b} (Z_t)_{t\geq 0} : (t \mapsto Z_t) \in L^1_{loc}([0, \infty)) \text{ a.s.} \},$
- $(\sigma(t, X_t))_{t>0} \in \mathcal{L}^*_{loc}(B) = \{$ 循序可测  $(Z_t)_{t>0} : (t \mapsto Z_t) \in L^2_{loc}([0, \infty)) \text{ a.s.} \}, 且$
- $X_t = X_0 + \int_0^t b(s, X_s) ds + \int_{s=0}^t \sigma(s, X_s) dB_s, t \ge 0.$

定义 16.2 (轨道 (强) 唯一性). 关于(SDE)的强唯一性成立, 若初值给定的任意两个强解不可区分.

例 16.3. 一维 SDE  $dX_t = b(t, X_t) dt + dB_t$  有强唯一性, 若 b 有界且  $\forall t \geq 0$  都有  $b(t, \cdot)$  遂减.

定理 16.4. 考虑(SDE). 若 b 和 σ 满足

- (全局 Lipschitz 条件)  $|b(t,x)-b(t,y)|+|\sigma(t,x)-\sigma(t,y)|\lesssim |x-y|$ , 和
- (4½ $) |b(t,x)| + |\sigma(t,x)| \lesssim |x| + 1,$

则任给  $\xi \in L^2(\mathscr{F}_0)$ , 存在强解  $X = (X_t)_{t>0}$  使之初值为  $X_0 = \xi$ . 任取  $T \in [0, \infty)$ , 有

$$\log \|X_t\|_{L^2(\mathbb{P})} \lesssim_{L(b,\sigma),T} t + 1 + \log(1 + \|\xi\|_{L^2(\mathbb{P})}), \quad t \in [0,T],$$

其中  $L(b,\sigma)$  表示  $(b,\sigma)$  的 Lipschitz 常数和线性增长率.

证明. 用 Picard 迭代构造解, 用 Gronwall 不等式给出二阶矩的估计.

**习题 16.1** ([1]: §5.1, §5.2; [2] §3.1). 阅读; 注意强解存在性证明中的局部化技巧.

**习题 16.2.** 利用 Picard 迭代求解线性随机微分方程  $dX_t = \lambda X_t dB_t$ , 其中  $B = (B_t)_{t \geq 0}$  是零初值一维标准 Brown 运动,  $X_0 = \xi$  与 B 独立,  $\lambda$  是常数.

解. 归纳定义  $X^{(n)} := \xi + \lambda \int X^{(n-1)} dB$ , 其中  $X^{(0)} \equiv \xi$ . 由命题12.7可得  $X_t^{(n)} = \xi \sum_{k=0}^n \frac{\lambda^k}{k!} H_k(B_t, t)$ , 于是  $X = \lim_{n \to \infty} X^{(n)} = \xi \mathcal{E}(\lambda B)$ .

**习题 16.3.** 在爆炸时之前, 求解  $dX_t = \frac{1}{2}e^{-2X_t} dt + e^{-X_t} dX_t$ ,  $X_0 = a \in \mathbb{R}$ .

解. 整理可得  $\mathrm{d}t = 2(\mathrm{e}^{2X_t} - \mathrm{e}^{X_t})\,\mathrm{d}X_t = \mathrm{d}(\mathrm{e}^{2X_t} - 2\,\mathrm{e}^{X_t}),$  则  $\mathrm{e}^{2X_t} - 2\,\mathrm{e}^{X_t} = t + \mathrm{e}^{2a} - 2\,\mathrm{e}^a,$  进而解得  $X_t = \log\left(1 + \varepsilon_a\sqrt{t + (\mathrm{e}^a - 1)^2}\right),$   $0 \le t < (2\,\mathrm{e}^a - \mathrm{e}^{2a}) \lor (\varepsilon_a\infty),$  其中  $\varepsilon_a := \mathrm{sgn}(a)\mathbb{1}_{[a\neq 0]} \pm \mathbb{1}_{[a=0]}.$  ////

**习题 16.4** ([1] 5.2.17). 设  $B = (B_t)_{t \geq 0}$  是一维标准 Brown 运动. 证明  $dX_t = 3X_t^{1/3} dt + 3X_t^{2/3} dB_t$  有不可数个强解形如  $X_t^{(\theta)} := B_t^3 \mathbb{1}_{\{t \geq \tau_\theta\}}$ , 其中  $\tau_\theta := \inf\{t \geq \theta : B_t = 0\}$ ,  $\theta \in [0, \infty]$ .

证明. 对  $X_t^{(\theta)} = (B_t \mathbb{1}_{\{t \geq \tau_\theta\}})^3$  应用 Itô 公式,有  $dX_t^{(\theta)} = 3(B_t \mathbb{1}_{\{t \geq \tau_\theta\}})^2 d(B_t \mathbb{1}_{\{t \geq \tau_\theta\}}) + 3(B_t \mathbb{1}_{\{t \geq \tau_\theta\}}) d(t \mathbb{1}_{\{t \geq \tau_\theta\}}) = 3(X_t^{(\theta)})^{2/3} dB_t + 3(X_t^{(\theta)})^{1/3} dt. \blacksquare$ 

#### 17 随机微分方程·续 (2021年12月6日+8日)

**命题 17.1** (Yamada-Watanabe). 一维SDE的解具有强唯一性, 若成立 Osgood 条件:

$$|b(t,x) - b(t,y)| \le k(|x-y|), \quad \& \quad |\sigma(t,x) - \sigma(t,y)| \le h(|x-y|),$$

其中  $k,h:[0,\infty)\to[0,\infty)$  是零初值严格递增函数, k 凹, 且  $\int_0^\varepsilon \frac{\mathrm{d}u}{k(u)}=\int_0^\varepsilon \frac{\mathrm{d}u}{h(u)^2}=\infty, \ \forall \varepsilon>0.$ 



**命题 17.2** (比较定理). 设  $B = (B_t)_{t \geq 0}$  是一维标准 Brown 运动,  $X^i = (X_t^i)_{t \geq 0}$  是一维随机微分方程  $\mathrm{d} X_t^i = b_i(t, X_t^i) \, \mathrm{d} t + \sigma(t, X_t^i) \, \mathrm{d} B_t$  的唯一存在的强解, i = 1, 2. 若  $b_1 \leq b_2$  且其一满足 Lipschitz 条件,  $X_0^1 \leq X_0^2$ , 则  $\mathbb{P}\{X_t^1 \leq X_t^2, \ \forall t \geq 0\} = 1$ .

证明. 由占位时公式, 可得  $L^0(X^1-X^2)=0$ . 接下来对  $(X^1-X^2)^+$  应用 Itô-Tanaka 公式, 取期望后代入 Lipschitz 条件, 从而可以利用 Gronwall 不等式.

**定义 17.3** (弱解). 随机过程  $\tilde{X} = (\tilde{X}_t)_{t \geq 0}$  称为(SDE)的**弱解**, 若  $\tilde{X}$  是某个 (新的) 带滤流概率空间上的随机微分方程  $d\tilde{X}_t = b(t, \tilde{X}_t) dt + \sigma(t, \tilde{X}_t) d\tilde{B}_t$  的强解, 其中  $\tilde{B} = (\tilde{B}_t)_{t \geq 0}$  是标准 Brown 运动.

定义 17.4 (分布 (弱) 唯一性). 关于(SDE)的弱唯一性成立, 若初分布给定的任意两个弱解同分布.

**例 17.5** (弱存在/唯一性不蕴涵强存在/唯一性). 一维 $SDE \, \mathrm{d}X_t = \mathrm{sgn}(X_t) \, \mathrm{d}B_t$  的弱解存在并且是标准 Brown 运动, 而 X 和 -X 必然同时为强解; 但是, 考虑 B 的自然滤流时, 强解不存在.

**定理 17.6.** 考虑 *SDE*  $dX_t = b(t, X_t) dt + dB_t$ ,  $0 \le t \le T$ , 其中 T 是固定正数,  $b: [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$  满足线性增长条件  $|b(t, x)| \lesssim |x| + 1$ , 则对任意初分布都存在弱解. 如果 (在各自的概率空间上) 弱解  $X^i = (X_t^i)_{t \in [0, T]}$  满足  $\int_0^T |b(t, X_t^i)|^2 dt < \infty$  (a.s.), i = 1, 2, 那么  $X^1 \stackrel{d}{=} X^2$ .

证明. 应用 Girsanov 定理变换 Brown 运动: 原测度下的 X, 新测度下的  $(X_t - \int_0^t b(s, X_s) \, \mathrm{d}s)_{t \in [0,T]}$ .  $\square$ 

**习题 17.1** ([1] 5.2.19). 设  $B = (B_t)_{t \geq 0}$  是一维标准 Brown 运动,  $X^i = (X_t^i)_{t \geq 0}$  是一维随机微分方程  $\mathrm{d} X_t^i = b_i(t, X_t^i) \, \mathrm{d} t + \sigma(t, X_t^i) \, \mathrm{d} B_t$  的唯一存在的强解, 其中  $b_i : [0, \infty) \times \mathbb{R} \to \mathbb{R}$  连续, i = 1, 2. 证明: 若  $b_1 < b_2$  且  $X_0^1 \leq X_0^2$ , 则  $\mathbb{P}\{X_t^1 \leq X_t^2, \ \forall t \geq 0\} = 1$ .

证明. 取定 m>233, 则  $b_2-b_1$  在紧集  $[0,m]\times[-m,m]$  上的下界为正,于是可构造 Lipschitz 连续的函数  $b_m:[0,\infty)\times\mathbb{R}\to\mathbb{R}$  使其在  $[0,m]\times[-m,m]$  上满足  $b_1\leq b_m\leq b_2$ . 设  $X^m=(X_t^m)_{t\geq 0}$  是  $\mathrm{d}X_t^m=b_m(t,X_t^m)\,\mathrm{d}t+\sigma(t,X_t^m)\,\mathrm{d}B_t$  的初值为  $X_0^m=X_0^1$  的强解,那么命题17.2给出

$$\mathbb{P}\big\{X_t^1 \leq X_t^m \leq X_t^2, \ \forall t \leq m \wedge \inf\{t: |X_t^m| > m\}\big\} = 1.$$

**习题 17.2** ([1] 5.2.20). 考虑  $dX_t = b(X_t) dt + \sigma(X_t) dB_t$ , 其中  $B = (B_t)_{t \geq 0}$  是一维标准 *Brown* 运动,  $b \in C^1(\mathbb{R}; \mathbb{R})$ ,  $\sigma \in C^2(\mathbb{R}; (0, \infty))$ . 设  $b' - \frac{1}{2}\sigma\sigma'' - \frac{b\sigma'}{\sigma}$  有界,且  $\frac{1}{\sigma}$  在  $\pm \infty$  处均不可积. 给定初值后,证 明此方程存在唯一的强解.

证明. 令  $f := \int_0^{\infty} \frac{\mathrm{d}u}{\sigma(u)}$ ,则有  $f' = \frac{1}{\sigma} > 0$  和  $f'' = -\frac{\sigma'}{\sigma^2}$ . 记  $Y_t := f(X_t)$ ,则  $X_t = f^{-1}(Y_t)$ . 由 Itô 公式,  $\mathrm{d}Y_t = f'(X_t)\,\mathrm{d}X_t + \frac{1}{2}f''(X_t)\,\mathrm{d}\langle X\rangle_t = \mathrm{d}B_t + (\frac{b}{\sigma} - \frac{1}{2}\sigma')(X_t)\,\mathrm{d}t = \mathrm{d}B_t + (\frac{b}{\sigma} - \frac{1}{2}\sigma')\circ f^{-1}(Y_t)\,\mathrm{d}t$ ,这里将 Y 视作待求. 可见  $\left(\left(\frac{b}{\sigma} - \frac{1}{2}\sigma'\right)\circ f^{-1}\right)' = \left(\left(\frac{b'}{\sigma} - \frac{b\sigma'}{\sigma^2} - \frac{1}{2}\sigma''\right)\frac{1}{f'}\right)\circ f^{-1} = (b' - \frac{b\sigma'}{\sigma} - \frac{1}{2}\sigma\sigma'')\circ f^{-1}$  有界,故 Y 的随机微分方程满足 Lipschitz 条件和线性增长条件. 强解 Y 存在唯一,则 X 亦如是.

**习题 17.3** ([1] 5.3.12). 考虑一维 $SDE \, \mathrm{d} X_t = -\operatorname{sgn}(X_t) \, \mathrm{d} t + \mathrm{d} B_t, \ X_0 = B_0.$  证明其弱解  $X = (X_t)_{t \geq 0}$  满足  $\mathbb{P}\{X_t \in A\} = \mathrm{e}^{-t/2} \, \mathbb{E}[\mathbb{1}_{\{B_t \in A\}} \, \mathrm{e}^{-|B_t| + L_t^0(B)}], \ A \in \mathcal{B}_{\mathbb{R}}.$ 

证明. 由 Tanaka 公式,  $-|B_t| + L_t^0(B) = -\int_0^t \operatorname{sgn}(B) \, \mathrm{d}B$ . 设概率测度  $\tilde{\mathbb{P}}$  满足  $\frac{\mathrm{d}\tilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}}|_{\mathscr{F}_t} = \mathrm{e}^{-t/2 - \int_0^t \operatorname{sgn}(B) \, \mathrm{d}B}$ , 则  $\tilde{B}_t := B_t + \int_0^t \operatorname{sgn}(B_s) \, \mathrm{d}s$  在  $\tilde{\mathbb{P}}$  下是标准 Brown 运动. 我们有  $\mathrm{d}B_t = -\operatorname{sgn}(B_t) \, \mathrm{d}t + \mathrm{d}\tilde{B}_t$ ,于是  $(B, \tilde{B})_\#\tilde{\mathbb{P}} = (X, B)_\#\mathbb{P}$ . 特别地,  $\mathbb{P}\{X_t \in A\} = \tilde{\mathbb{P}}\{B_t \in A\} = \mathbb{E}[\mathbb{1}_{\{B_t \in A\}} \frac{\mathrm{d}\tilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}}]$  即为所求.



**习题 17.4** ([1]: §5.3.A, §5.3.B). 阅读.

**命题 17.7.** 考虑(SDE)将 b 替换为  $b + H\sigma$ , 其中  $H \in \mathcal{L}^*(B)$  在 [0,T] 上有界, T 是固定正数,则摄动前后的随机微分方程在 [0,T] 上的弱解存在性与分布唯一性保持不变.

定理 17.8 (Yamada-Watanabe). 对于(SDE), 轨道唯一性蕴涵分布唯一性.

推论 17.9 (Yamada–Watanabe). 对于(SDE), 弱解存在性加轨道唯一性蕴涵强解存在性. 此时成立如下**因果原则**: 存在  $(\mathcal{B}^m_{\mathbb{R}}\otimes\mathcal{B}^n_{C[0,\infty)})/\mathcal{B}^m_{C[0,\infty)}$  可测映射 h, 使得  $X=h(X_0,B)$ .

### 18 Stroock-Varadhan 鞅方法 (2021年12月8日)

注 18.1. 求(SDE)的弱解等价于寻找连续函数空间上的特定分布.

定义 18.2.  $(\mathsf{A}f)(t,x) := \frac{1}{2} \sum_{i,k=1}^m a^{ik}(t,x) \frac{\partial^2 f}{\partial x^i \partial x^k}(t,x) + \sum_{i=1}^m b^i(t,x) \frac{\partial f}{\partial x^i}(t,x), \ \forall f(t,\cdot) \in C^2(\mathbb{R}^m;\mathbb{R}).$  对于时齐 (不依赖 t) 情形,  $(\mathsf{A}f)(x) := \frac{1}{2} \sum_{i,k=1}^m a^{ik}(x) \frac{\partial^2 f}{\partial x^i \partial x^k}(x) + \sum_{i=1}^m b^i(x) \frac{\partial f}{\partial x^i}(x), \ \forall f \in C^2(\mathbb{R}^m;\mathbb{R}).$ 

**定理 18.3.** 循序可测随机过程  $X=(X_t)_{t\geq 0}$  是(SDE)的弱解当且仅当对任意  $f\in C^{1,2}([0,\infty)\times\mathbb{R}^m;\mathbb{R})$  都有  $M^f=(M_t^f)_{t\geq 0}$  是连续局部鞅, 其中

$$M_t^f := f(t, X_t) - f(0, X_0) - \int_0^t \left(\frac{\partial f}{\partial s} + \mathsf{A}f\right)(s, X_s) \,\mathrm{d}s.$$

此时,  $\langle M^f, M^g \rangle_t = \int_0^t \sum_{i,k=1}^m \left( a^{ik} \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial x^k} \right) (s,X_s) \, \mathrm{d}s, \ \forall f,g \in C^{1,2}([0,\infty) \times \mathbb{R}^m;\mathbb{R}).$ 

证明. 必要性用 Itô 公式; 充分性用定理9.3, 为计算互特征需取坐标映射  $(t,x)\mapsto x^i,\,1\leq i\leq m.$ 

**习题 18.1** ([1]: §5.3.C, §5.3.D, §5.4.A, §5.4.B; [2]: §3.6, §3.3, §3.4). 阅读.

**习题 18.2** ([1] 5.4.33). 设  $b^i, a^{ik} : \mathbb{R}^m \to \mathbb{R}$  ( $1 \le i, k \le m$ ) 都是在紧集上有界的可测函数, $(X_t)_{t \ge 0}$  是  $(m \ \text{$\mathfrak{a}$})$  连续适应随机过程, $f \in C^2(\mathbb{R}^m; \mathbb{R})$ . 对  $\lambda \in \mathbb{R}$ ,定义  $f_{\lambda}(t,x) := e^{-\lambda t} f(x)$ , $(t,x) \in [0,\infty) \times \mathbb{R}^m$ . 证明 (‡)  $M^{f_0} \in \mathcal{M}_{\text{cts.loc}} \iff M^{f_{\lambda}} \in \mathcal{M}_{\text{cts.loc}}$ ,且

当 1/f 在紧集上有界时,(‡)  $\iff$   $(N_t)_{t\geq 0}\in\mathcal{M}_{\mathrm{cts,loc}}$ ,其中  $N_t:=f(X_t)\operatorname{e}^{-\int_0^t \frac{Af}{f}(X_s)\operatorname{d}s}-f(X_0)$ .

证明. 易得  $\mathrm{d}M_t^{f_\lambda} = \mathrm{e}^{-\lambda t}\,\mathrm{d}M_t^{f_0}$  和  $\mathrm{d}N_t = \mathrm{e}^{-\int_0^t \frac{\mathrm{A}f}{f}(X_s)\,\mathrm{d}s}\,\mathrm{d}M_t^{f_0}$ , 其中  $\mathrm{d}M_t^{f_0} = \mathrm{d}f(X_t) - (\mathsf{A}f)(X_t)\,\mathrm{d}t$ .

**习题 18.3** ([1] 5.4.34). 设  $X = (X_t)_{t \geq 0}$  是(SDE)的解, 且  $\forall T > 0$  有  $|b(t,x)| + |\sigma(t,x)| \lesssim_T 1$ ,  $t \in [0,T]$ . 任取  $f \in C^{1,2}([0,\infty) \times \mathbb{R}^m; \mathbb{R})$  和  $k = (k_t)_{t \geq 0} \in \mathcal{L}^1_{loc}([0,\infty))$ , 证明  $M^{f,k} = (M_t^{f,k})_{t \geq 0} \in \mathcal{M}_{cts,loc}$ , 其中

$$M_t^{f,k} := f(t, X_t) e^{-\int_0^t k_u \, du} - f(0, X_0) - \int_0^t \left( \frac{\partial f}{\partial s} + \mathsf{A}f - k_s f \right) (s, X_s) e^{-\int_0^s k_u \, du} \, ds.$$

进一步地, 若  $||f||_{C^{1,2}} < \infty$  且 k 有下界, 则  $M^{f,k}$  是鞅.

证明. 由 Itô 公式,  $dM_t^{f,k} = \sum_{j=1}^n e^{-\int_0^t k_u du} \sum_{i=1}^m \left(\frac{\partial f}{\partial x^i} \sigma_j^i\right)(t, X_t) dB_t^j$ .

**习题 18.4** ([1] 5.4.35). 设  $X = (X_t)_{t \geq 0}$  是(SDE)的解,  $X_0 = x_0 \in \mathbb{R}^m$ , 其中 b 和  $\sigma$  都是不依赖 t 的 在紧集上有界的可测函数. 对于  $f \in C^2(\mathbb{R}^m; [0, \infty))$ , 若存在常数  $\lambda > 0$  和  $c \geq 0$  使得  $Af + \lambda f \leq c$ , 证明  $\mathbb{E}f(X_t) \leq f(x_0) e^{-\lambda t} + \frac{c}{\lambda}(1 - e^{-\lambda t})$ .

证明. 易见  $M^f$  是鞅, 于是  $\mathbb{E}f(X_t) = f(x_0) + \mathbb{E}\int_0^t (\mathsf{A}f)(X_s) \,\mathrm{d}s = f(x_0) + \int_0^t \mathbb{E}(\mathsf{A}f)(X_s) \,\mathrm{d}s$ . 我们有  $\frac{\mathrm{d}}{\mathrm{d}t} \left[ \mathrm{e}^{\lambda t} \, \mathbb{E}f(X_t) \right] = \mathrm{e}^{\lambda t} \left[ \lambda \, \mathbb{E}f(X_t) + \mathbb{E}(\mathsf{A}f)(X_t) \right] \leq c \, \mathrm{e}^{\lambda t},$  积分即得  $\mathrm{e}^{\lambda t} \, \mathbb{E}f(X_t) - f(x_0) \leq \frac{c}{\lambda} (\mathrm{e}^{\lambda t} - 1).$ 



#### **19 鞅问题** (2021年12月15日)

注 19.1. 简便起见, 考虑时齐情形, 即各种系数不依赖 t.

**定义 19.2** (鞅问题的解). 若  $\forall f \in C_c^2(\mathbb{R}^m; \mathbb{R})$  都有  $M^f \in \mathcal{M}^2_{\mathrm{cts}}$ , 则  $C([0, \infty); \mathbb{R}^m)$  上的概率测度称为 A 对应的**鞅问题的解**. 换言之, 鞅问题的解是 (SDE)( $\sigma$ , b) 的弱解的分布.

注 19.3. 利用局部化,  $M^f \in \mathcal{M}^2_{\mathrm{cts}}$ ,  $\forall f \in C^2_c(\mathbb{R}^m; \mathbb{R}) \iff M^f \in \mathcal{M}_{\mathrm{cts,loc}}$ ,  $\forall f \in C^2(\mathbb{R}^m; \mathbb{R})$ .

定义 19.4 (鞅问题适定性). 称一个鞅问题适定, 若任给固定初值都存在唯一解.

定义 19.5 (时齐 Markov 分布族). 称  $C([0,\infty);\mathbb{R}^m)$  上的一族概率测度  $\{P_x\}_{x\in\mathbb{R}^m}$  为 Markov 族, 若

- (i).  $\forall A \in \mathscr{B}^m_{C[0,\infty)}$  有  $x \mapsto P_x(A)$  可测,
- (ii).  $\forall x \in \mathbb{R}^m$  有  $P_x\{\omega \in C([0,\infty); \mathbb{R}^m) : \omega(0) = x\} = 1$ ,
- (iii).  $\forall x \in \mathbb{R}^m, \ \forall t \geq 0 \$ 有  $P_x \theta_t^{-1} | \mathscr{B}^m_{C[0,t]} = P_{X_t}, \$ 其中  $\theta_t : \omega \mapsto \omega(\cdot + t)$  且  $X_t : \omega \mapsto \omega(t)$ .

如果(iii)中固定的 t 推广为 (有限) 停时  $\tau$ , 就得到了强 Markov 性.

**定理 19.6.** 若  $\sigma$  和 b 都是不依赖 t 的在紧集上有界的可测函数,且 (SDE)( $\sigma$ ,b) 对应的鞅问题适定,则此鞅问题的解构成强 Markov 族.

**习题 19.1** ([2] §4.3; [1] §5.4.C). 阅读.

### 20 **鞅问题**·适定性 (2021年12月20日)

**定理 20.1** (存在性). 证明. 利用 Euler 折线法, 结合胎紧性得到子列极限分布, 即为鞅问题的解. □

定理 20.2 ((一维边际) 唯一性). 证明. 在扩张概率空间上对鞅取期望, 让作用函数过遍决定类. □

注. 更多内容参看 D.W. Stroock; S.R.S. Varadhan. (2006). Multidimensional Diffusion Processes. Springer. https://doi.org/10.1007/3-540-28999-2

**习题 20.1** ([1]: §5.4.D, §5.4.E, §2.4.B, §2.4.C; [2] §3.5). 阅读.

**习题 20.2** ([1] 5.3.15). 设(SDE)中 b 和  $\sigma$  满足  $|b(t,x(t))| + |\sigma(t,x(t))| \le L(1 + \max_{s \in [0,t]} |x(s)|)$ ,  $\forall t \ge 0$ ,  $\forall x \in C([0,\infty); \mathbb{R}^m)$ , 其中 L > 0 是常数. 证明: 若  $X = (X_t)_{t \ge 0}$  是(SDE)的弱解,则任取  $p \ge 1$  和 T > 0,存在仅依赖 p, T, L, m 的常数 C > 0,使得  $\forall t \in [0,T]$  有  $\mathbb{E}\left[\max_{s \in [0,t]} |X_s|^{2p}\right] \le C\left(1 + \mathbb{E}[|X_0|^{2p}]\right) \mathrm{e}^{Ct}$  和  $\mathbb{E}[|X_t - X_s|^{2p}] \le C\left(1 + \mathbb{E}[|X_0|^{2p}]\right)(t-s)^p$ , $\forall s \in [0,t]$ . 证明. 见 [1] §5.9 题解; 注意符号与此处略有区别.

### 21 随机积分·带跳 (2021年12月15日+22日)

**定义 21.1** (方括号过程). 设  $X = (X_t)_{t>0}$  是实值随机过程, 对每个 t 存在

$$[X]_t := \mathbb{P} - \lim \sum_{k=1}^m (X_{t_k} - X_{t_{k-1}})^2 \quad (\max_k (t_k - t_{k-1}) \to 0),$$

其中  $0 = t_0 < t_1 < \cdots < t_m = t$ , 则  $[X] = ([X]_t)_{t>0}$  称为 X 的二次变差过程.



**习题 21.1.** 设  $(N_t)_{t\geq 0}$  是速率参数为  $\lambda$  的 Poisson 过程,  $\tilde{N}=(\tilde{N}_t)_{t\geq 0}$ , 其中  $\tilde{N}_t:=N_t-\lambda t$ . 证明  $[\tilde{N}]_t=N_t$  且  $(\tilde{N}_t^2-[\tilde{N}]_t)_{t\geq 0}$  是鞅. 注意  $(N_t)_{t\geq 0}$  不可料  $(\Phi \mathbb{D}_t^2.5)$ , 因而不可能是补偿子.

证明. 在习题2.2中已知  $\tilde{N}$  和  $(\tilde{N}_t^2 - \lambda t)_{t \geq 0}$  是鞅, 而  $\tilde{N}_t^2 - [\tilde{N}]_t = (\tilde{N}_t^2 - \lambda t) - \tilde{N}_t - ([\tilde{N}]_t - N_t)$ , 所以只需验证二次变差. 固定 t. 当  $\max_k (t_k - t_{k-1}) \to 0$  时,  $\sum_k \mathbb{P}\{N_{t_k} - N_{t_{k-1}} \geq 2\} = \sum_k o(t_k - t_{k-1}) = o(1)$ , 于是  $\mathbb{P}$ -  $\lim \sum_k (N_{t_k} - N_{t_{k-1}})^2 = \sum_k (N_{t_k} - N_{t_{k-1}}) = N_t$ .

**习题 21.2.** 沿用习题*21.1*的记号. 令  $\tau_i := \inf\{t : N_t \geq i\}$ , 即  $(N_t)_{t \geq 0}$  的第 i 次跳跃时间. 逐轨道求 Lebesgue-Stieltjes 积分  $\int_{s=0}^t \mathbb{1}_{[0,\tau_1]}(s) \, \mathrm{d}\tilde{N}_s$  和  $\int_{s=0}^t \mathbb{1}_{[0,\tau_1]}(s) \, \mathrm{d}\tilde{N}_s$ . 注意  $(\mathbb{1}_{[0,\tau_1]}(t))_{t \geq 0}$  可料.

解. 易得  $\int_{s=0}^{t} \mathbb{1}_{[0,\tau_1)}(s) \, d\tilde{N}_s = -\lambda(t \wedge \tau_1)$ ,而  $\int_{s=0}^{t} \mathbb{1}_{[0,\tau_1]}(s) \, d\tilde{N}_s = N_{\tau_1} \mathbb{1}_{\{\tau_1 \leq t\}} - \lambda(t \wedge \tau_1) = \tilde{N}_{t \wedge \tau_1}$ . ////

**命题 21.2.** 设  $M=(M_t)_{t\geq 0}\in \mathcal{M}^2$ , 则  $[M]=([M]_t)_{t\geq 0}$  是右连续的增过程, 且  $(M_t^2-[M]_t)_{t\geq 0}$  是鞅.

注 21.3. 定理2.13表明  $M \in \mathcal{M}^2_{\mathrm{cts}}$  有  $[M] = \langle M \rangle$ . 习题21.1给出了  $[N] \neq \langle N \rangle$ .

△ 下面固定  $M = (M_t)_{t>0} \in \mathcal{M}^2$ .

定义 21.4.  $\mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle) := \bigcap_{T \in (0,\infty)} \mathcal{L}^2_{T,\mathrm{pd}}(\langle M \rangle), \mathcal{L}^2_{T,\mathrm{pd}}(\langle M \rangle) := \{ 可料 (X_t)_{t \geq 0} : \mathbb{E} \int_{t=0}^T X_t^2 \,\mathrm{d}\langle M \rangle_t < \infty \}.$ 

命题 21.5. 范数  $\|X\|_{\mathcal{L}^2_{T,\mathrm{pd}}(\langle M \rangle)} := \sqrt{\mathbb{E} \int_{t=0}^T X_t^2 \, \mathrm{d}\langle M \rangle_t}$  使  $\mathcal{L}^2_{T,\mathrm{pd}}(\langle M \rangle)$  成为 Hilbert 空间.

推论 21.6. 准范数  $\|X\|_{\mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle)} := \sum_{T=1}^{\infty} (1 \wedge \|X\|_{\mathcal{L}^2_{T,\mathrm{pd}}(\langle M \rangle)})/2^T$  使  $\mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle)$  成为完备度量空间.

**定理 21.7.**  $\mathcal{L}_0$  是  $\mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle)$  的稠密子空间.

定义 21.8 (简单过程的随机积分).  $( \stackrel{\blacktriangle}{ } ) \in \mathcal{L}_0$  关于 M 的**随机积分**为鞅变换

$$\int_0^t X \, dM := I_t^M(X) := \sum_{k=0}^\infty \xi_k (M_{t_{k+1} \wedge t} - M_{t_k \wedge t}), \ t \in [0, \infty).$$

**引理 21.9.** 设  $(A_t)_{t\geq 0}$  是适应且可积的<u>连续</u>增过程. 若  $(X_t)_{t\geq 0}$  循序可测且  $\mathbb{E}\int_{t=0}^T X_t^2 \, \mathrm{d}A_t < \infty$ ,  $\forall T \in [0,\infty)$ , 则存在可料过程  $(\tilde{X}_t)_{t\geq 0}$  使得  $\mathbb{E}\int_{t=0}^T |\tilde{X}_t - X_t|^2 \, \mathrm{d}A_t = 0$ ,  $\forall T \in [0,\infty)$ .

注 21.10. 当  $M \in \mathcal{M}^2_{\mathrm{cts}}$  时,  $\mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle) \subset \mathcal{L}^*(M)$ .

定义 21.11 (随机积分).  $X \in \mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle)$  关于  $M \in \mathcal{M}^2$  的**随机积分**为

$$\int X \, \mathrm{d}M := I^M(X) := \mathcal{M}^2 - \lim I^M(X^{(n)}), \ \sharp + \mathcal{L}_0 \ni X^{(n)} \xrightarrow{\mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle)} X \ (n \to \infty).$$

定理 21.12.  $I^M: X \in \mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle) \mapsto \int X \, \mathrm{d}M \in \mathcal{M}^2$  是线性等距, 且  $\langle \int X \, \mathrm{d}M \rangle = \left( \int_{s=0}^t X_s^2 \, \mathrm{d}\langle M \rangle_s \right)_{t \geq 0}$ .

注 21.13. 类似地, 对于  $M \in \mathcal{M}^2_{loc}$  有  $I^M : X \in \mathcal{L}^2_{pd,loc}(\langle M \rangle) \mapsto \int X \, \mathrm{d}M \in \mathcal{M}^2_{loc}$ , 其中

 $\mathcal{L}^2_{\mathrm{pd},\mathrm{loc}}(\langle M \rangle) := \big\{ \text{可料}\,(X_t)_{t \geq 0} : \text{存在一列停时}\,\,\tau_n \nearrow \infty \text{ (a.s.) 使得}\,\,(X_t\mathbbm{1}_{(0,\tau_n]}(t))_{t \geq 0} \in \mathcal{L}^2_{\mathrm{pd}}(\langle M \rangle) \big\}.$ 

**命题 21.14.**  $\langle \int X \, dM, \int Y \, dN \rangle = \left( \int_{s=0}^t X_s Y_s \, d\langle M, N \rangle_s \right)_{t \geq 0}, \ \forall X \in \mathcal{L}^2_{\mathrm{pd,loc}}(\langle M \rangle), \ \forall Y \in \mathcal{L}^2_{\mathrm{pd,loc}}(\langle N \rangle), \ \forall M, N \in \mathcal{M}^2_{\mathrm{loc}}.$  特別地,  $\langle \int X \, dM, N \rangle = \left( \int_{s=0}^t X_s \, d\langle M, N \rangle_s \right)_{t \geq 0}.$ 

#### Itô 公式

定义 21.15 (纯断局部鞅). 称 (初值未必为零的) 局部鞅 M 纯断 (purely discontinuous), 记为  $M \in \mathcal{M}_{\mathrm{dis,loc}}$ , 若  $\forall N \in \mathcal{M}_{\mathrm{cts,loc}}$  有 MN 是局部鞅, 亦即  $\langle M, N \rangle = 0$ .



引理 21.16. 有限变差局部鞅是纯断的.

**命题 21.17** ( $\mathcal{M}_{loc} \oplus \{ \overline{\partial} \{ M_{dis,loc} \} = \mathcal{M}_{cts,loc} \oplus \mathcal{M}_{dis,loc}$ ). 对于局部鞅 M, 存在唯一的分解  $M = M^{cts} + M^{dis}$ , 使得  $M^{cts} \in \mathcal{M}_{cts,loc}$  且  $M^{dis} \in \mathcal{M}_{dis,loc}$ .

定义 21.18. 定义7.1中的半鞅  $X = X_0 + M + A$  的连续局部鞅部分唯一确定为  $X^{\text{cts}} := M^{\text{cts}}$ .

定义 21.19 (跳过程). 随机过程  $X=(X_t)_{t\geq 0}$  的**跳过程**为  $\Delta X=(\Delta X_t)_{t\geq 0}$ , 其中  $\Delta X_t:=X_t-X_{t-}$ , 并且约定  $X_{0-}=X_0$ .

**引理 21.20.** 设  $X = (X_t)_{t>0}$  是半鞅, 则有

$$[X]_t = \langle X^{\text{cts}} \rangle_t + \sum_{s \le t} (\Delta X_s)^2 = X_t^2 - X_0^2 - 2 \int_{s-0}^t X_{s-1} dX_s, \quad \forall t \ge 0.$$

特别地, 对于  $M \in \mathcal{M}_{loc}$ , 有  $M^2 - [M] \in \mathcal{M}_{loc}$ .

**定理 21.21** (半鞅 Itô 公式). 设  $f \in C^2(\mathbb{R}; \mathbb{R})$ . 对于半鞅  $X = (X_t)_{t>0}$ , 有

$$f(X_t) = f(X_0) + \int_{s=0}^t f'(X_{s-}) dX_s + \frac{1}{2} \int_{s=0}^t f''(X_{s-}) d\langle X^{\text{cts}} \rangle_s + \sum_{s \le t} \left[ \Delta f(X_s) - f'(X_{s-}) \Delta X_s \right]$$

$$= f(X_0) + \int_{s=0}^t f'(X_{s-}) dX_s + \frac{1}{2} \int_{s=0}^t f''(X_{s-}) d[X]_s$$

$$+ \sum_{s \le t} \left[ \Delta f(X_s) - f'(X_{s-}) \Delta X_s - \frac{1}{2} f''(X_{s-}) (\Delta X_s)^2 \right].$$

例 21.22. 承习题21.2, 有  $\begin{cases} \int_{s=0}^{t} \tilde{N}_{s-} \, \mathrm{d}\tilde{N}_{s} = \frac{1}{2} (\tilde{N}_{t}^{2} - N_{t}), \\ \int_{s=0}^{t} \tilde{N}_{s-}^{2} \, \mathrm{d}\tilde{N}_{s} = \frac{1}{3} (\tilde{N}_{t}^{3} - N_{t}) - \frac{1}{2} N_{t} (N_{t} - 1) + \lambda \sum_{i=1}^{N_{t}} \tau_{i}. \end{cases}$ 

**习题 21.3** ([2]: §2.4, §2.5, §2.6, §7.1, §7.6). 阅读.



The End 🛎

