Is the Composite Fermion
a Dirac particle?

Junren Shi (ffit312)
International Center for Quantum Materials
Peking University

HKU, 1/25/2019



| Composite
| Fermions

Jainendra K. Jain




|\ Composite

!

| Fermions




Outline

* |Introduction

* |nterpretations of the CF: Newtonian, Dirac or “Niugian”?
 Evidences from microscopic wave functions

* Proper definition/evaluation of the Berry phase

e Segal-Bargmann transform and CF wave functions

e Conclusion and Outlook

JS and Wencheng Ji, PRB 97, 125133 (2018); JS, arXiv:
1704.07712 (2017); Guangyue Ji and JS, arXiv:1901.00321 (2019).



Composite Fermion

Physics of a partially filled Landau level
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Fig. 5.7. A humorous view of composite fermions. Source: Kwon Park.

From J. K. Jain, Composite Fermions (Cambridge, 2007).
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Hidden Hilbert space

Y (2)

Physical Hilbert space Hidden Hilbert space
Z=Xx+1y

P Lo (w(z)

CF Mapping
2p
Bijl-dastrow factor: J(z) = H (zi - Zj)

N
Projection to the LLL: Py : 2* — 20,

J. K. Jain and P. W. Anderson, PNAS 106, 9131 (2009): The
structure could be universal for strongly correlated systems
(e.g., spin liquid).
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CF Fermi-Liquid

v=1/2p Bep=0 A Fermi liquid of CFs

CF: an ordinary Newtonian particle?
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Kalmeyer-Zhang: Phys. Rev. B 46, 9889 (1992).
Halperin-Lee-Read: Phys. Rev. B 47, 7312 (1993).




“Two clouds” of the CF
Theory

1. CF Hall conductance at the half-filling

2. Asymmetry of the CF mapping for a filling
fraction and its hole conjugate



“Cloud” #1

CF Hall conductance at half filling
The particle-hole symmetry dictates:

1 e?
0., =——
Y2 0h
and the corresponding CF Hall conductance:

] &2

GCF —

XY

Lee, Krotov, and Gan, Kivelson, Phys. Rev. B 85, 15552 (1997).

However, the effective magnetic field is zero!



“Cloud” #2

Asymmetry of the CF mapping

v=1/3
_1eB B _IB Lo
Pe—3 7 CF = 73 CF
One fully occupied CF Landau level
v=2/3
_ZeB B — lB P
Pe—3 PR S CF

Two fully occupied CF Landau levels
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Is the Composite Fermion a Dirac Particle?

Dam Thanh Son

Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
(Received 19 February 2015; published 2 September 2015)

We propose a particle-hole symmetric theory of the Fermi-liquid ground state of a half-filled Landau
level. This theory should be applicable for a Dirac fermion in the magnetic field at charge neutrality, as
well as for the v = % quantum Hall ground state of nonrelativistic fermions in the limit of negligible inter-
Landau-level mixing. We argue that when partlcle hole symmetry is exact, the composite fermion is a
massless Dirac fermion, characterized by a Berry phase of z around the Fermi circle. We write down a
tentative effective field theory of such a fermion and discuss the discrete symmetries, in particular, CP. The
Dirac composite fermions interact through a gauge, but non-Chern-Simons, interaction. The particle-hole
conjugate pair of Jain-sequence states at filling factors n/(2n + 1) and (n + 1)/(2n + 1), which in the
conventional composite fermion picture corresponds to integer quantum Hall states with different filling
factors, n and n + 1, 1s now mapped to the same half-integer filling factor n —I—% of the Dirac composite
fermion. The Pfaffian and anti-Pfaffian states are interpreted as d-wave Bardeen-Cooper-Schrieffer paired
states of the Dirac fermion with orbital angular momentum of opposite signs, while s-wave pairing would
give rise to a particle-hole symmetric non-Abelian gapped phase. When particle-hole symmetry is not
exact, the Dirac fermion has a CP-breaking mass. The conventional fermionic Chern-Simons theory is
shown to emerge in the nonrelativistic limit of the massive theory.




Dirac interpretation

A Fermi-sea of Dirac CFs with a density half of the
magnetic flux density:

Pcr = BI2¢y

Dirac point contributes a half-quantized (anomalous) Hall
conductance [Jackiw, PRD 29, 2375 (1984)].

Dirac CFs experience an effective magnetic field:
Bep = = 2¢o(p — p112)

Quantization rule of Dirac Fermions:
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h 2
Can we have an “half Landau level” in the real world?
Chu, JS, and S.-Q. Shen, PRB 84, 085312 (2011).



Alternative interpretation

* The composite fermion is neither an ordinary Newtonian
particle nor a Dirac particle, but a “NiuQian” particle
subject to a uniform Berry curvature and the
Sundaram-Niu dynamics.

* The uniform Berry curvature gives rise to a -Berry phase
around the Fermi circle and the half-quantized
anomalous Hall conductance of CFs at the half filling.

* The apparent asymmetry of the CF mapping is actually
how the symmetry is manifested in a system subject to
the Berry curvature.

JS, arXiv:1704.07712 (2017).



Sundaram-Niu Dynamics

for systems breaking the time-reversal symmetry
1 0€(k)
X =
h
hk = gE + gx X B

—k x Q(k)

Berry curvature: “magnetic field” in k-space: |

adiabatic transport of a particle in the k-space ks
gives rise to a Berry phase — the counterpart
of the Aharonov-Bohm phase in the real space !

b, = [ AW -k AK) = i | Oging) -
Y

Qk) = V, x Ak)

Xiao, Chang, Niu, RMP 82, 1959 (2010).



Anomalous Hall Effect

2

dk
G;‘;H = — _C;’z J dQZ(k)
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For a 2D metallic system
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r . Berry phase around the Fermi-circle
Haldane, PRL 93, 206602 (2004).



CF Hall Conductance

At the half filling, the CF has an anomalous Hall conductance
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with respect to the Berry phase

¢F= + 7T



(A)symmetry of CF Mapping
The quantization rule of cyclotron orbits
Sk e|Bcgl 1 ¢Sk
2 T n (n i 2 | 27t>

The highest occupied cyclotron orbit is always around
the half-filled CFL Fermi-circle

n n+1
UV = U =
2n+1 2n+1
bs = pp=rn b =—p=—n
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Three competing pictures

Picture Particle Berry curvature

Halperin-Lee-Read Newtonian 0
Son Dirac wo(k)
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Three competing pictures

Picture Particle Berry curvature
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Microscopic wave function

dictates the interpretation

Rezayi-Read wave function for the composite Fermi-liquid:

A _ iki-*+kl-*-/2_
Wt (z) = Py det ok +15)

J(2)

= AT @ + ik, — 2 — ik)* [ [ e+

1<j \ 7V =741k

Dipole interpretation:

vortex position

N. Read, Semicond. Sci. Tech. 9, 1859 (1994).
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CF

Berry phase
(), Sk —

2

Berry phase of a CF dipole

A

Aharanov-Bohm phasg !

Sk
e X (eB)2

JS, arXiv:1704.07712 (2017); Haldane, APS March meeting, 2016



CF dynamics from a WF

i

A 7.
Y(z) = AH(Zi _ Zj)Zp 22
i<j ' I coherent state localized at Z

Introducing “momentum”

, . . i i
6721'* 4 — e?Zz*Zielkfzi ~ 672"* atahiz

Projected to the LLL
¥, ) = A ] G + ik, — g — k) [ [ €37
i<j l.
* 25 = L), k; =~ k(1)

SL=0 L=in(¥|¥)-(¥|V,,|¥)

ALL CF wave functions can be expanded in ¥. ,(z)



CF dynamics

for a CF-Wigner crystal

1oV h.
h@kl eB

: oV
he, = — 1Y eBri x 2
O0x; v

J
* A uniform Berry curvature Q_ (p) = n/eB,
* An emergent effective “magnetic field” (CS field) B;?.

e Note: CF position is the vortex position

JS and Wencheng Ji, PRB 97, 125133 (2018).



Evidence for the Dirac CF?

PHYSICAL REVIEW LETTERS 121, 147202 (2018)

Editors' Suggestion

Berry Phase and Model Wave Function in the Half-Filled Landau Level

Scott D. Geraedts,l’2 Jie Wang,1 E. H. Rezayi,3 and F. D. M. Haldane'
lDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA
ZDepartment of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
3Department of Physics, California State University, Los Angeles, California 90032, USA

® (Received 23 December 2017; published 3 October 2018)

We construct model wave functions for the half-filled Landau level parametrized by “composite fermion
occupation-number configurations” in a two-dimensional momentum space, which correspond to a Fermi
sea with particle-hole excitations. When these correspond to a weakly excited Fermi sea, they have a large
overlap with wave functions obtained by the exact diagonalization of lowest-Landau-level electrons
interacting with a Coulomb interaction, allowing exact states to be identified with quasiparticle
configurations. We then formulate a many-body version of the single-particle Berry phase for adiabatic
transport of a single quasiparticle around a path in momentum space, and evaluate it using a sequence of
exact eigenstates in which a single quasiparticle moves incrementally. In this formulation the standard free-
particle construction in terms of the overlap between “periodic parts of successive Bloch wave functions” is
reinterpreted as the matrix element of a “momentum boost” operator between the full Bloch states, which
becomes the matrix elements of a Girvin-MacDonald-Platzman density operator in the many-body context.
This allows the computation of the Berry phase for the transport of a single composite fermion around the
Fermi surface. In addition to a phase contributed by the density operator, we find a phase of exactly x for
this process. -




Evidence for the Dirac CF?

PHYSICAL REVIEW LETTERS 121, 147202 (2018)

Editors' Suggestion

Berry Phase and Model Wave Function in the Half-Filled Landau Level

Scott D. Geraedts,"” Jie Wang,1 E. H. Rezayi,3 and F. D. M. Haldane'
lDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA

Our results are consistent with the theory of Son [10], in
which the Berry phase arises from the Dirac nature of the
composite fermions. However the composite fermions
discussed 1n our work are single-component objects, and
the relation to a two-component composite Dirac fermion 1s
unclear. While the model wave function with a compact
Fermi surface 1s unexpectedly close to being particle-hole
symmetric, if a quasihole 1s moved inside the Fermi
surface, this breaks down: the particle-hole conjugate states
have less and less overlap and become orthogonal as the
quasi-hole approaches the center of Fermi surface. By
forming orthogonal linear combinations of particle-hole
conjugate states, the Dirac cone is possible to be found.
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However...

e The definition of the Berry phase?
e \arious numerical artifacts.

 Microscopic CFL wave function?



Issue #1: definition

Geraedts et al.’s defintion:
¢p = — arg <\Pk ﬁk—k" ‘Pk’>

¥, : CFL wave function with respect to a k-configuration

Prp = Z eik=k)r . “momentum boost operator” to compensate
l- the change of the momenta
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term of the Schrodinger Lagrangian
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Issue #1: definition

Geraedts et al.’s defintion:
¢p = — arg <\Pk ﬁk—k" ‘Pk’>

¥, : CFL wave function with respect to a k-configuration

Prp = Z eik=k)r . “momentum boost operator” to compensate
l- the change of the momenta

However, the Berry phase has an origin of the time-derivative
term of the Schrodinger Lagrangian

Ly= ih(q’k | lPk)

Geraedts et al.’s phase is actually a scattering phase, which is
not a reliable predictor for the Berry phase.



Issue #2: numerical artifacts



Issue #2: numerical artifacts

 small overlaps which further deteriorate when the system
size is scaled up;

a) b) 1. c) ...
path e |

N, 13 38 110 [36(b1)|38(b2) 36
v old | 0.82 | 0.72 | 0.57 | U.D. | U.D. 0.93
¢B/7T

old [0.657]0.36"|0.18 | 0.04" | 0.01" 0.227

|D|min




Issue #2: numerical artifacts

 small overlaps which further deteriorate when the system
size is scaled up;

* sensitive to the choice of paths: the paths vertical to the
Fermi circle have nearly vanishing overlaps;

a) b) 1. c) ...
path e |

N, 13 38 110 [36(b1)|38(b2) 36
v old | 0.82 | 0.72 | 0.57 | U.D. | U.D. 0.93
¢B/7T

old [0.657|0.36™|0.18™ | 0.04" | 0.01" 0.227

|D|min




Issue #2: numerical artifacts

small overlaps which further deteriorate when the system
size is scaled up;

sensitive to the choice of paths: the paths vertical to the
Fermi circle have nearly vanishing overlaps;

extraneous x /2 phases for each momentum change.

a) b) 1. c) ...
path e |

N, 13 38 110 [36(b1)|38(b2) 36
v old | 0.82 | 0.72 | 0.57 | U.D. | U.D. 0.93
¢B/7T

old [0.657|0.36™|0.18™ | 0.04* | 0.01" 0.227

|D|min




Issue #2: numerical artifacts

 small overlaps which further deteriorate when the system
size is scaled up;

* sensitive to the choice of paths: the paths vertical to the
Fermi circle have nearly vanishing overlaps;

e extraneous xx/2 phases for each momentum change.

..........



Issue #2: numerical artifacts

 small overlaps which further deteriorate when the system
size is scaled up;

* sensitive to the choice of paths: the paths vertical to the
Fermi circle have nearly vanishing overlaps;

e extraneous xx/2 phases for each momentum change.
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Issue #3: wave function

Standard CF wave function on atorus for v = 1/m:

P (2) = Py det

e 1 <kl'Zj* + kl*ZJ>/2

J@) =" D) ] ] 6" - 2.

1<j

J@2) ~ Y (=D ({2, + ikp;} )
- P

6 . modified sigma function

Jain-Kamilla wave function (adopted by Geraedts et al.):

WK (2) = det |yyth) | 3" (2 +iK) [ ] #"% - 2),

i<j

i) = 552 [ (5= ik i),

k#i

Do they vield the same Berry curvature?



Proper definition of the
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e Original definition: the phase of (¥, |¥,) for k' — k.
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Proper definition of the
Berry phase

Original definition: the phase of (¥, |Y¥;) for k' - k.

Complexity: excluding the propagating phase ¢** for a
translationally invariant system.

However, (¥, |z |¥,) does not define the position of an
individual electron.

Nevertheless, one can define the position of the electron
associated with a momentum k;:

4 = Z (= 1) "Re(¥y| ﬁﬁiﬁﬂkW(lPk | W) = Re(Wi |2 | o)/ (Vi [ o)
P

e ¢ - unsymmetrized wave function
o = 52T ({2, + iky}) P, = Z (=1)P P,
P






 The Berry connection can then be defined:

Im(¥y | ) . '
Ly=— = Ly=k -2+ A -k,
T (Tl
Im(%¥y | 7| 0y 1) -
A, =— 1 14(2) = e (2)

1 (Wi | or)



 The Berry connection can then be defined:

Im(¥y | ¥)

AT i B A
Im(%¥y | 7| 0y 1) -
A, = — : (z) = e *p(2)
“ (Wi | o) ‘ Yk

* Berry phase for a discrete change:

k

1 e

g = J Ay - dky = — 5 [arg(‘{’k |e 1 *=02 g N — (k = k’)]
k



 The Berry connection can then be defined:

Im(¥ | ) . '
0 CALA » 0= K12 T A, Ky
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A, = — 1 i (2) = e (2)
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* Berry phase for a discrete change:

k

1 e

g = J Ay - dky = — 5 [arg(‘{’k |e 1 *=02 g N — (k = k’)]
k

Geraedts et al.’s defintion
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* Berry phase for a discrete change:
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1 e

g = J Ay - dky = — 5 [arg(‘{’k |e 1 *=02 g N — (k = k’)]
k

Geraedts et al.’s defintion
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 The Berry connection can then be defined:
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* Berry phase for a discrete change:

k

1 e
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k

Geraedts et al.’s defintion
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 The Berry connection can then be defined:

Im(¥ | ) . '
0 CALA » 0= K12 T A, Ky
Im(%¥y | 7| 0y 1) -
A, = — 1 i (2) = e (2)
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* Berry phase for a discrete change:

k

1 e

g = J Ay - dky = — 5 [arg(‘{’k |e 1 *=02 g N — (k = k’)]
k

¢B=—arg<‘lfk Y (~1)P ekt cak/>
P




 The Berry connection can then be defined:

Im(¥ | ) . '
0 CALA » 0= K12 T A, Ky
Im(%¥y | 7| 0y 1) -
A, = — 1 i (2) = e (2)
. (Wi | or) ¢ qﬁk

* Berry phase for a discrete change:

k

1 e

g = J Ay - dky = — 5 [arg(‘{’k |e 1 *=02 g N — (k = k’)]
k

Our definition

¢pp = —arg(¥Py | e RAZEY .



Subtlety: electron vs. CF
representation

* The definition of the Berry phase/connection depends on
the definition of the “position”.

e Z Is the position of an electron.

* The position of a CF should be defined as z; = z; + i

[JS and Ji, PRB 97, 125133 (2018); JS, arXiv:1704.07712
(2017)]

V _ A€
Akl—Ak1 k,Xn

g =g+ (k; Xqy) - n
QY= Q8 +2



Numerical evaluation

with the JK wave function



Numerical evaluation

with the JK wave function

e overlaps are always close to 1;

a) b) c)
.:::%Ié|
Path e eeeee II
N 13 | 38 | 110 [36(b1)[38(b2) 36
o) 0ld108210.721057] UD. | UD. 0.93
B/ Mew| 1.11 | 1.03 | 1.01 | 0.75% | 0.05 0.61
D) old 10.6510.3670.187] 0.04™ | 0.01" 0.22%
min ew! 0.94 | 0.98 | 0.99 | 0.99 | 0.99 0.99




Numerical evaluation

with the JK wave function

e overlaps are always close to 1;

e nsensitive to the choice of paths;

a) b) c)
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Numerical evaluation

with the JK wave function

e overlaps are always close to 1;
e nsensitive to the choice of paths;

e No extraneous *+7x/2 phases.

a) b) c)
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Numerical evaluation

with the JK wave function

e overlaps are always close to 1;
e nsensitive to the choice of paths;

e No extraneous *+7x/2 phases.
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Numerical evaluation

with the JK wave function

e overlaps are always close to 1;
e nsensitive to the choice of paths;

e No extraneous *+7x/2 phases.
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Berry curvature distribution

a O JK a
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The Berry curvature vanishes outside the Fermi sea.
However, it Is a continuous distribution inside
— NOT a massless Dirac Fermion.
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vield different distributions of the Berry curvature because of
different quasi-periodicities In the k-space

o FOr kl —>k1+an
Wt = exp(imL¥k /2)¥S | P = exp(iL*k/2)¥;"

 We can define a super-Brillouin zone (SBZ) spanned by
Koy = Loy X 1

a

* The Berry connection has the quasi-periodicities:

— c — C
Ap i, = Ap Ky Xm/2 | Ap k= Ag + KX nl2

e The total Chern number Ci, = (2ﬂ)_1§|gAk1 - dk;



JK & CF wave functions

vield different distributions of the Berry curvature because of
different quasi-periodicities In the k-space

o FOr kl —>k1+an
Wt = exp(imL¥k /2)¥S | P = exp(iL*k/2)¥;"

 We can define a super-Brillouin zone (SBZ) spanned by
Koy = Loy X 1

a

* The Berry connection has the quasi-periodicities:
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* The average Berry curvature:
Q'=2-—m E QY =1
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JK & CF wave functions

vield different distributions of the Berry curvature because of
different quasi-periodicities In the k-space

o FOr kl —>k1+an
Wt = exp(imL¥k /2)¥S | P = exp(iL*k/2)¥;"

 We can define a super-Brillouin zone (SBZ) spanned by
Koy = Loy X 1

a

* The Berry connection has the quasi-periodicities:
Ag k., =Ag+m(Kpxn)/2 | A =Af + K, xn/2

k1+Ka(b) k1+Ka(b)

e The total Chern number Cyo = (27)” lﬂgAk dk,
* The average Berry curvature:
QY=2-m E QY =1

<



CF wave function and the
Segal-Bargmann transform

The Hilbert space of the LLL is a Segal-Bargmann space
(see Girvin and Jach, PRB 29, 5617 (1984))

All CF wave functions can be expressed as projected

Y(2) =

Segal-Bargmann transforms

Segal-Bargmann _space

2
du(n) = He_‘”"‘ /Zdr]idnl.*/47zi

l

Reproducing kernel

Jdﬂ(n)e%”*'zf(rl) = f(z)

s Jdum)e%("* =412 Jony ()

i

Hidden Hilbert space



Berry curvature of the CF
wave function

1 s
b = = - [arg( ¥y e E 0 ) — k= i)
(P e 2 F Y = Y (Dot e 79 o

P (2) = Jdﬂ(ﬂ)W’7 (e



Berry curvature of the CF
wave function
b=~ [are(W, e E P ) — (k= 1)
(WeF | e-iq oy =) (DX e % ofF,

P (2) = Jdﬂ(ﬂ)W’7 (e

(q + k CF>

(o 16792 ) = e 27 (140 5 (o CF | o

transport exchange



Berry curvature of the CF
wave function
b=~ [are(W, e E P ) — (k= 1)
<‘P,SF|e-i“|¢k+q> = ) (=D le7 % | o

P (2) = Jdﬂ(ﬂ)W’7 (e

(q + k CF>

(o 16792 ) = e 27 (140 5 (o CF | o

transport exchange

Q(k) = — 1 QYk) = +1
for the standard CF wave function



Conclusion and Outlook

* No, the composite Fermion is not a massless Dirac
Fermion, at least for the two wave functions.

* The CF with respect to the standard CF theory is a
“Niugian” particle with a uniform Berry curvature.

* The structure of the hidden Hilbert space?
e |s it finite? Topology?
* An explicit construction?

e A proper field theory for CFs? — a field theory defined in
the Segal-Bargmann space?

{w@.¥'(@)} = 2"
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Thank you very much for your attention!



CF: A Dipole

\—k,,; x 312,

N. Read, Semicond. Sci. Tech. 9, 1859 (1994)
Pasquier, Haldane, Nuclear Physics B 516, 719 (1998)

The “momentum?” is actually the displacement from the electron
to the guantum vortices.

e
VeV

Z i QAB;},%X 0 11 T
0 —€B5/L’j2>< 1L T

.o

J
The electron is only coupled to the external (real) magnetic field
The quantum vortices are only coupled to the emergent (CS) field



CF Position: Electron vs.
Vortices?

The position of a CF is assigned to its constituent quantum
vortices

E<§Ai>—kix2l% éizfﬁz——Rg
— zj + ikily — ik i)™ | | o, (r:)

In case we use the electron position:

U({ri}) H

1<

- e e T

&L

- Dj

oV
ox¢
oV




Case ll: CF Fermi Liquid

Rezayi-Read WF: Phys. Rev. Lett. 72, 900 (1994)
~ 1Bl L2
VUops = Prppe” s i l%] H(Zg — 2j)°¥p ({x:})
i<
Adding an electron into the CF Fermi sea:
U (x,{x;}) x etk z/2y (z +1k/B,{z}),

Wz, {2}) o exp(—|B|2*/4) [ (2 — 2)*¥crs
1 /|2 ? IN A
pa (@, ') = ge—'%lw—ac P @xa) 2
<\Ijk ‘\Ijk’> — 5’{:1{:’

Wave-packet dynamics can be constructed using the basis.
Sundaram and Niu, Phys. Rev. B 59, 14915 (1999)




CF Dynamics

r=zx"=2x°—k; x 3l5

dje_(‘?VI d}_@V 1 S
 Op - Op eBY
.0V .__5’_V

b= oxe b= ox

1
Q(k) = 6—32 for all k

It is consistent with the dynamics of guiding centers:

Haldane, in The Quantum Hall effect, ed. by Prange and Girvin
(1990)
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CF Dynamics

. Ohep
T=— k x Q(k),

iCZECf—I—ZEXBCf

L

CFs follow Niu’s dynamics instead of Newton’s

Sundaram-Niu, Phys. Rev. B 59, 14915 (1999),
Xiao-Chang-Niu, Rev. Mod. Phys. 82, 1959 (2010).




CF Momentum Manifold

The CF momentum manifold inherits its characteristics from
the Landau level

e A finite phase volume: S = 27|B,
e Particle-hole symmetry

e A non-zero Chern number C = ssign(B) = —C,

An effective theory starting from a Landau level, instead of a band
of free electrons/Dirac fermions?



Four-band Toy Model

oo [Alp @)op o)+ 5] gpro+h
</ i epp-a'—l—g —Ao,
o = (01,02,03) p = (p1, P2, €p)

8 =2B.s/|B] or = (T4 03)/2

The Hamiltonian defines an effective CF model on a disc-shape
momentum manifold with
a uniformly distributed Berry curvature



Compared to the Dirac
Theory

* Both theories predict the ni-Berry phase for the half filling.

* The CF conductance at half filling is protected in our
theory, but probably not in the Dirac theory — Wang,

Cooper, Halperin, and Stern, preprint, arXiv:1701.00007
(2017).

 Qur theory is based on existing wave functions, while the
Dirac theory may imply new constructions of ground/
excited state wave-functions, which are deemed to be
revolutionary.



Berry curvature correction
to the density of states

Liouville’s theorem breaks down for the Sundaram-Niu
dynamics

A k
AV(H) = AV(0)
1 - (g/h)B - Qk) ]
m) # AV (t1)
The phase space has a measure:
q Havi(t)
Dk)=1 - %Bﬂz(k) r

dk dk
J > j D(k)
(27)* (27)?

Xiao, JS, and Niu, PRL 95, 137204 (2005)



Symmetry out of asymmetry

The phase space area of a half-filled CFL Fermi-sea can

accommodate
dk B eB.
ne:[ 2 <1_2Bcfg(k)> =e_— !
S, (27) h 2h 2h
Quantization condition
€ | Bcfl
n =N
e L h
__n 7 ~ n+1
2n+ 1 T

B =B/Qn+ 1) B =— B/Qn+ 1)




CF Spectrum

)

v=1/3 v=2/3
CB,>0 CB, <0

* The apparent asymmetry is due to the necessity of
filling an extraneous LL at the band bottom.
e Similar asymmetry (between valleys) arises in

gapped graphene-like systems (e.g., BN, MoS2).
JS, arXiv:1704.07712 (2017)



