This article presents a capacitively coupled voltage-controlled oscillator (VCO)-based sensor readout featuring a hybrid phase-locked loop (PLL)-ΔΣ modulator structure. It leverages phase-locking and phase-frequency detector (PFD) array to concurrently perform quantization and dynamic element matching (DEM), much-reducing hardware/power compared with the existing VCO-based readouts' counting scheme. A low-cost in-cell data-weighted averaging (DWA) scheme is presented to enable a highly linear tri-level digital-to-analog converter (DAC). Fabricated in 40-nm CMOS, the prototype readout achieves 78-dB SNDR in 10-kHz bandwidth, consuming 4.68 μW and 0.025-mm2 active area. With 172-dB Schreier figure of merit, its efficiency advances the state-of-the-art VCO-based readouts by 50×.
This article presents a second-order noise-shaping (NS) successive approximation register (SAR) analog-to-digital converter (ADC) with a process, voltage, and temperature (PVT)-robust closed-loop dynamic amplifier. The proposed closed-loop dynamic amplifier combines the merits of closed-loop architecture and dynamic operation, realizing robustness, high accuracy, and high energy-efficiency simultaneously. It is embedded in the loop filter of an NS SAR design, enabling the first fully dynamic NS-SAR ADC that realizes sharp noise transfer function (NTF) while not requiring any gain calibration. Fabricated in 40-nm CMOS technology, the prototype ADC achieves an SNDR of 83.8 dB over a bandwidth of 625 kHz while consuming only 107 μW. It results in an SNDR-based Schreier figure-of-merit (FoM) of 181.5 dB.
As any analog-to-digital converter (ADC) with a front-end sample-and-hold (S/H) circuit, successive approximation register (SAR) ADC suffers from a fundamental signal-to-noise ratio (SNR) challenge: its sampling kT/C noise. To satisfy the SNR requirement, the input capacitor size has to be sufficiently large, leading to a great burden for the design of the ADC input driver and reference buffer. This article presents an SAR ADC with a kT/C noise-cancellation technique. It enables the substantial reduction of ADC input capacitor size but without the large kT/C noise penalty. It greatly relaxes the requirement for ADC input driver and reference buffer. Built in 40-nm CMOS, a prototype 13-bit ADC has only 240-fF input capacitance and occupies a small area of 0.005 mm2. Operating at 40 MS/s, it achieves a 69-dB signal-to-noise-and-distortion ratio (SNDR) across the Nyquist frequency band while consuming 591 μW of power.
This paper presents a reflectometer with an integrated transducer as a high-integration miniaturized sensor for dielectric spectroscopy at 240 GHz in SiGe BiCMOS technology. The reflectometer consists of a signal generation component using 240-GHz multiplier chains, side-coupled directive couplers and a two-channel heterodyne receiver. Readout of the transducer upon exposure to liquids is performed by the measurement of its reflected signal using an external excitation source. The experimental dielectric sensing is demonstrated by using a binary methanol-ethanol mixture placed on the proposed on-chip dielectric sensor in the assembled printed circuit board.
This article presents a reflectometer-based on-chip dielectric sensor with integrated transducers at 240 GHz. The chip simplifies the measurement of a vector network analyzer (VNA) to sense the incident and reflected waves by using two heterodyne mixer-based receivers with a dielectric sensing element. Radio frequency (RF) and local oscillator (LO) submillimeter waves are generated by two frequency multiplier chains, respectively. Two back-to-back identical differential side-coupled directive couplers are proposed to separate the incident and reflected signals and couple them to mixers. Both transmission line and coplanar stripline transducers are proposed and integrated with reflectometer to investigate the sensitivity of dielectric sensors. The latter leads to a larger power variation of the reflectometer by providing more sufficient operating bands for the magnitude and phase slope of S11 . The readout of the transducers upon exposure to liquids is performed by the measurement of their reflected signals using two external excitation sources. The experimental dielectric sensing is demonstrated by using binary methanol–ethanol mixture placed on the proposed on-chip dielectric sensor in the assembled printed circuit board. It enables a maximum 8 dB of the power difference between the incident and reflected channels on the measurement of liquid solvents. Both chips occupy an area of 4.03 mm 2 and consume 560 mW. Along with a wide operational frequency range from 200 to 240 GHz, this simplified one-port-VNA-based on-chip device makes it feasible for the use of handle product and suitable for the submillimeter-wave dielectric spectroscopy applications.
2D/1D graphitic carbon nitride hybridized with titanate nanotubes (g-C3N4/TNTs) was prepared through a hydrothermal reaction–calcination method. The photocatalyst exhibited high degradation efficiency for sulfamethazine (SMT) through photocatalysis under simulated solar light. The optimized material was composed of anatase, rutile, titanate and g-C3N4 crystalline phases. In situ transformation of titanate to anatase and rutile with specific content proportion (∼80:20, P25-type composition) leaded to formation of nanoscale “hot spots” at rutile–anatase–titanate interfaces, and then subsequent charge transfer occurred. Large specific surface area of TNTs as skeleton resulted in high-efficient interface reaction, while heterojunction with g-C3N4 further extended the adsorption to visible light region and retarded electron-hole pairs recombination. Density functional theory (DFT) calculation indicated the SMT sites with high Fukui nucleophilic (f-) index prefered to be attacked by radacils. Reduced toxicity of SMT degradation intermediates, good reusability and stability of g-C3N4/TNTs all suggested the great application potential in practical water treatment area.
A 480-GHz sensor consists of signal stimulus and the transducer element as well as a subharmonic mixer in a 130-nm SiGe BiCMOS technology is reported. It features a mixer-first architecture based on down-conversion subharmonic mixer, an local oscillator (LO) chain at 240-GHz using a frequency doubler with variable-gain characterization, and a 480-GHz RF chain, making the fully integrated 480-GHz receiver possible. In a frequency range of 210–270 GHz at a maximum of 1.5-V supply offset, the LO chain has a 14-dB power-level variation, comprising with a 120-GHz frequency quadrupler, a power amplifier, and a variable frequency doubler. The proposed subharmonic receiver is driven by the RF and LO chain with a multiplier factor of 16 and 8, respectively. In this way, 480-GHz signal is generated, fed through the transducer, and hetero-mixed at subharmonic mixer. The measured output power difference is adjustable over 8 dB. Along with the intermediate frequency (IF) bandwidth of 20 GHz, the wide RF bandwidth makes it suitable for submillimetre-wave receiver-based dielectric spectroscopy applications. The chip occupies an area of 2.2 mm 2 and consumes 290 mW.
Chronic obstructive pulmonary disease (COPD) is a frequent diagnosis in older individuals and contributor to global morbidity and mortality. Given the link between lung disease and aging, we need to understand how molecular indicators of aging relate to lung function and disease. Using data from the population-based KORA (Cooperative Health Research in the Region of Augsburg) surveys, we associated baseline epigenetic (DNA methylation) age acceleration with incident COPD and lung function. Models were adjusted for age, sex, smoking, height, weight, and baseline lung disease as appropriate. Associations were replicated in the Normative Aging Study. Of 770 KORA participants, 131 developed incident COPD over 7 years. Baseline accelerated epigenetic aging was significantly associated with incident COPD. The change in age acceleration (follow-up - baseline) was more strongly associated with COPD than baseline aging alone. The association between the change in age acceleration between baseline and follow-up and incident COPD replicated in the Normative Aging Study. Associations with spirometric lung function parameters were weaker than those with COPD, but a meta-analysis of both cohorts provide suggestive evidence of associations. Accelerated epigenetic aging, both baseline measures and changes over time, may be a risk factor for COPD and reduced lung function.
Covalent organic frameworks (COFs) have recently been demonstrated to have great application potentials in water treatment. Their photocatalytic performance towards bacterial disinfection and organic pollutant degradation yet has seldom been investigated. In this study, AgI modified COFs (using 2,5-diaminopyridine and 1,3,5-triformylphloroglucinol as precursors) (COF-PD/AgI) were fabricated and their applications to photocatalytically disinfect bacteria and degrade organic pollutants were investigated. COF-PD/AgI exhibited effective photocatalytic performance towards Escherichia coli disinfection and organic pollutant (Rhodamine B and acetaminophen) degradation. SEM images were employed to investigate cell disinfection process, while theoretical density functional theory (DFT) calculation and intermediates determination were used to elucidate organic pollutant degradation processes. Scavenger experiments, ESR spectra and chemical probes experiments confirmed O2−, h+ and OH played important roles in the photocatalytic process. The formation of dual-band Z-scheme heterojunction improved photocatalytic performance. COF-PD/AgI remained high photocatalytic activity in the four consecutive cycles and could serve as a promising photocatalyst for water purification.