Recently, highly efficient solar cells based on organic-inorganic perovskites have been intensively reported for developing fabricating methods and device structures. Additional power conversion efficiency should be gained without increasing the thickness and the complexity of the devices to accord with practical applications. In this paper, a rough interface between perovskite and HTM was fabricated in perovskite solar cells to enhance the light scattering effect and improve the charge transport. The parameters related to the morphology have been systematically investigated by sequential deposition. Simultaneous enhancements of short-circuit current and power conversion efficiency were observed in both CH3NH3PbI3 and CH3NH3PbI3-xClx devices containing the rough interface, with power conversion efficiencies of 10.2% and 10.8%, respectively. Our finding provides an efficient and universal way to control the morphology and further optimize perovskite solar cells for devices by sequential deposition with various structures.
This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.
We demonstrate the instability-free ion acceleration regime by introducing laser control with two parallel circularly polarized laser pulses at an intensity of I = 6.8 x 10(21) W/cm(2), normally incident on a hydrogen foil. The special structure of the equivalent wave front of those two pulses, which contains Gaussian peaks in both sides and a concavity in the centre (2D), can suppress the transverse instabilities and hole boring effects to constrain a high density ion clump in the centre of the foil, leading to an acceleration over a long distance and gain above 1GeV/u for the ion bunches.
Nutrient load reduction is a well-recognized requirement for aquatic ecosystem restoration. However, decision making is difficult due to challenges related to uncertainty and the interaction between decision makers and modelers, including (a) the quantitative relationship between risks arising from different aspects and the fact that cost is not usually revealed and (b) the fact that decision makers are not significantly involved in the modeling process. In this study, an interactive optimal-decision procedure with risk-cost tradeoff is proposed to overcome these limitations. It consists of chance-constrained programming (CCP) models, risk scenario analysis using the Taguchi method, risk-cost tradeoff and feedback for model adaption. A hybrid intelligent algorithm (HIA) integrating Monte Carlo simulation, artificial neural networks, and an augmented Lagrangian genetic algorithm was developed and applied to solve the CCP model. The proposed decision procedure and HIA are illustrated through a case study of uncertainty-based optimal nutrient load reduction in the Lake Qionghai Watershed, China. The CCP model has four constraints associated with risk levels indicating the possibility of constraint violation. Sixteen risk scenarios were designed with the Taguchi method to recognize the interactions between multiple constraint risks and total cost. The results were analyzed using the signal-to-noise ratio, analysis of variance, and multivariate regression. The model results demonstrate how cost is affected by risk for the four constraints and show that the proposed approach can provide effective support for decision making on risk-cost tradeoffs. (C) 2014 Elsevier Ltd. All rights reserved.
Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH < 2% and RH > 60 %) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R-2 >= 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments