科研成果

2016
Yin X, Zhang J, Hu Z, Xie H, Guo W, Wang Q, Ngo HH, Liang S, Lu S, Wu W. Effect of photosynthetically elevated pH on performance of surface flow-constructed wetland planted with Phragmites australis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH. 2016;23:15524-15531.Abstract
Combination of emergent and submerged plants has been proved to be able to enhance pollutant removal efficiency of surface flow-constructed wetland (SFCW) during winter. However, intensive photosynthesis of submerged plants during summer would cause pH increase, which may have adverse effects on emergent plants. In this study, nitrogen transformation of lab-scale SFCW under pH gradient of 7.5, 8.5, 9.5 and 10.5 was systematically investigated. The results showed that total nitrogen (TN) removal efficiency decreased from 76.3 +/- 0.04 to 51.8 +/- 0.04 % when pH increased from 7.5 to 10.5, which was mainly attributed to plant assimilation decay and inhibition of microbe activities (i.e., nitrite-oxidizing bacteria and denitrifiers). Besides, the highest sediment adsorption in SFCW was observed at pH of 8.5. In general, the combination of submerged and emergent plants is feasible for most of the year, but precaution should be taken to mitigate the negative effect of high alkaline conditions when pH rises to above 8.5 in midsummer.
Chen Y, Zhang Z, Huang R, Huang Z. Effect of residual interface stress on thermo-elastic properties of unidirectional fiber-reinforced nanocomposites. International Journal of Mechanical SciencesInternational Journal of Mechanical SciencesInternational Journal of Mechanical Sciences. 2016;113:133-147.Abstract
Surface/interface effect plays a significant role in the study of the mechanical properties of nano composites. Most previous papers in the literature only considered the surface/interface elasticity, whereas some papers only considered the residual surface/interface stress (surface/interface tension). In this paper, an energy-based surface/interface theory is applied to systematically study the effective thermo-elastic properties of unidirectional fiber-reinforced nanocomposites, in which both the surface/interface elasticity and the residual surface/interface stress are included. The emphasis is particularly placed on the influence of the residual interface stress on the effective thermo-elastic properties of such nanocomposites, since this influence was ignored by many previous authors. Analytical expressions of five effective transversely isotropic elastic constants are derived, in which a modified generalized self consistent method is suggested to obtain an explicit expression of the size-dependent effective transverse shear modulus. Furthermore, with an introduced concept of 'equivalent fiber' (i.e., a fiber together with its interface), the effective thermal expansion coefficients and the effective specific heat at constant strain of the fiber-reinforced nanocomposite are obtained. Finally, numerical examples are illustrated, and the effect of residual interface stress on the effective thermo-elastic properties of the fibrous nanocomposite is discussed. It is shown that the residual interface stress has a significant effect on the overall thermo-elastic properties of the nanocomposites. (C) 2016 Elsevier Ltd. All rights reserved.
Chen YQ, Zhang ZG, Huang RC, Huang ZP. Effect of residual interface stress on thermo-elastic properties of unidirectional fiber-reinforced nanocomposites. International Journal of Mechanical Sciences. 2016;113:133-147.Abstract
Surface/interface effect plays a significant role in the study of the mechanical properties of nano composites. Most previous papers in the literature only considered the surface/interface elasticity, whereas some papers only considered the residual surface/interface stress (surface/interface tension). In this paper, an energy-based surface/interface theory is applied to systematically study the effective thermo-elastic properties of unidirectional fiber-reinforced nanocomposites, in which both the surface/interface elasticity and the residual surface/interface stress are included. The emphasis is particularly placed on the influence of the residual interface stress on the effective thermo-elastic properties of such nanocomposites, since this influence was ignored by many previous authors. Analytical expressions of five effective transversely isotropic elastic constants are derived, in which a modified generalized self consistent method is suggested to obtain an explicit expression of the size-dependent effective transverse shear modulus. Furthermore, with an introduced concept of 'equivalent fiber' (i.e., a fiber together with its interface), the effective thermal expansion coefficients and the effective specific heat at constant strain of the fiber-reinforced nanocomposite are obtained. Finally, numerical examples are illustrated, and the effect of residual interface stress on the effective thermo-elastic properties of the fibrous nanocomposite is discussed. It is shown that the residual interface stress has a significant effect on the overall thermo-elastic properties of the nanocomposites. (C) 2016 Elsevier Ltd. All rights reserved.
Jia J, Chen Z. The Effect of Smart Phones' Application in Regular University English Class on Students' Learning Performance, in Proceedings - 2015 International Conference of Educational Innovation Through Technology, EITT 2015.; 2016:131-136. 访问链接
Zhang JJ, Lee KB, He L, Seiffert J, Subramaniam P, Yang L, Chen S, Maguire P, Mainelis G, Schwander S, et al. Effects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles. Environ Sci Process Impacts. 2016;18:1333-1342.Abstract
Nanoceria (i.e., CeO2 nanoparticles) fuel additives have been used in Europe and elsewhere to improve fuel efficiency. Previously we have shown that the use of a commercial fuel additive Envirox in a diesel-powered electricity generator reduced emissions of diesel exhaust particle (DEP) mass and other pollutants. However, such additives are currently not permitted for use in on-road vehicles in North America, largely due to limited data on the potential health impact. In this study, we characterized a variety of physicochemical properties of DEPs emitted from the same engine. Our methods include novel techniques such as Raman spectrometry for analyzing particle surface structure and an assay for DEP oxidative potential. Results show that with increasing Envirox concentrations in the fuel (0x, 0.1x, 1x, and 10x of manufacturer recommended 0.5 mL Envirox per liter fuel), DEP sizes decreased from 194.6 +/- 20.1 to 116.3 +/- 14.8 nm; the zeta potential changed from -28.4 mV to -22.65 mV; DEP carbon content decreased from 91.8% to 79.4%; cerium and nitrogen contents increased from 0.3% to 6.5% and 0.2% to 0.6%, respectively; the ratio of organic carbon (OC) to elemental carbon (EC) increased from 22.9% to 38.7%; and the ratio of the disordered carbon structure to the ordered carbon structure (graphitized carbon) in DEPs decreased. Compared to DEPs emitted from 0x, 0.1x, and 1x fuels, DEPs from the 10x fuel had a lower oxidative potential likely due to the increased ceria content because pure ceria nanoparticles exhibited the lowest oxidative potential compared to all the DEPs. Since the physicochemical parameters tested here are among the determinants of particle toxicity, our findings imply that adding ceria nanoparticles into diesel may alter the toxicity of DEPs. The findings from the present study, hence, can help future studies that will examine the impact of nanoceria additives on DEP toxicities.
Liu J, Wu X, Hu Y, Dai C, Peng Q, Liang D*. Effects of Cu(II) on the Adsorption Behaviors of Cr(III) and Cr(VI) onto Kaolin. Kazemian H. Journal of Chemistry [Internet]. 2016;2016:3069754. LinkAbstract
The adsorption of Cr(III) or Cr(VI) in the absence and presence of Cu(II) onto kaolin was investigated under pH 2.0–7.0. Results indicated that the adsorption rate was not necessarily proportional to the adsorption capacity. The solutions’ pH values played a key role in kaolin zeta potential , especially the hydrolysis behavior and saturation index of heavy metal ions. In the presence of Cu(II), reached the maximum adsorption capacity of 0.73 mg·g−1 at pH 6.0, while the maximum adsorption capacity for the mixed Cr(VI) and Cu(II) system () was observed at pH 2.0 (0.38 mg·g−1). Comparing the adsorption behaviors and mechanisms, we found that kaolin prefers to adsorb hydrolyzed products of Cr(III) instead of Cr3+ ion, while adsorption sites of kaolin surface were occupied primarily by Cu(II) through surface complexation, leading to Cu(II) inhibited Cr(VI) adsorption. Moreover, Cr(III) and Cr(VI) removal efficiency had a positive correlation with distribution coefficient . Cr(III) and Cr(VI) removal efficiency had a positive correlation with distribution coefficient and that of adsorption affinities of Cr(III) or Cr(VI) on kaolin was found to be Cr(III) < Cr(III)-Cu(II) and Cr(VI) > Cr(VI)-Cu(II).
Tian X, Geng Y, Dai* H, Fujita T, Wu R, Liu Z, Masui T, Xie Y. The effects of household consumption pattern on regional development: A case study of Shanghai. Energy [Internet]. 2016;103:49-60. 访问链接
Tan G, Xu N, Liu Y, Hao H, Sun W. Effects of lead concentration and accumulation on the performance and microbial community of aerobic granular sludge in sequencing batch reactors. ENVIRONMENTAL TECHNOLOGY. 2016;37:2905-2915.Abstract
The present study investigated the effects of lead on the morphological structure, physical and chemical properties, wastewater treatment performance and microbial community structure of aerobic granular sludge (AGS) in sequencing batch reactors (SBRs). The results showed that at Pb2+ concentration of 1mg/L, the mixed liquid suspended solids decreased, the settling velocity increased and the sludge volume index increased sharply. Meanwhile, AGS began to disintegrate and show an irregular shape. In terms of wastewater treatment in an SBR, the phosphorus removal rate was affected only until the Pb2+ concentration was up to 1mg/L. The NH4+- N removal efficiency began to decline when the Pb2+ concentration increased to 6mg/L, while the removal of chemical oxygen demand increased slightly within the Pb2+ concentration range of 1-6mg/L. Significant changes were observed in the microbial community structure, especially the dominant bacteria. Compared to the Pb2+ accumulation on the sludge, the Pb2+ concentration in the aqueous phase played a more important role in the performance and microbial community of AGS in SBRs.
Pan F, Liu W, Yu Y, Yin X, Wang Q, Zheng Z, Wu M, Zhao D, Zhang Q, Lei X. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment. Scientific reports. 2016;6:37518.
Li J, Wu R, Li Y, Hao Y, Xie S, Zeng L. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China. Science of the Total Environment. 2016;557:531–541.
Chen Y, Shen G, Su S, Du W, Huangfu Y, Liu G, Wang X, Xing B, Smith KR, Tao S. Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of International and Chinese water boiling test protocols. Energy for Sustainable Development [Internet]. 2016;32:22-30. 访问链接
Wang D, Zhou Y, Shao S. Efficient implementation of smoothed particle hydrodynamics (SPH) with plane sweep algorithm. Communications in Computational Physics [Internet]. 2016;19(3):770-800. 访问链接Abstract
Neighbour search (NS) is the core of any implementations of smoothed particle hydrodynamics (SPH). In this paper, we present an efficient $\mathcal{O}(N\log N)$ neighbour search method based on the plane sweep (PW) algorithm with $N$ being the number of SPH particles. The resulting method, dubbed the PWNS method, is totally independent of grids (i.e., purely meshfree) and capable of treating variable smoothing length, arbitrary particle distribution and heterogenous kernels. Several state-of-the-art data structures and algorithms, e.g., the segment tree and the Morton code, are optimized and implemented. By simply allowing multiple lines to sweep the SPH particles simultaneously from different initial positions, a parallelization of the PWNS method with satisfactory speedup and load-balancing can be easily achieved. That is, the PWNS SPH solver has a great potential for large scale fluid dynamics simulations.
Zhao Q, Yuan X, Ma X. Efficient measurement-device-independent detection of multipartite entanglement structure. Physical Review A. 2016;94(1):012343.
HU WY, ZHOU T, NING JY. An efficient Q-RTM algorithm based on local differentiation operators. In: SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists; 2016. pp. 4183–4187.
Yao L, Yu T, Ba L, Meng H, Fang X, Wang Y, Li L, Rong X, Wang S, Wang X, et al. Efficient silicon quantum dots light emitting diodes with an inverted device structure. Journal of Materials Chemistry C. 2016;4:673–677.
Song X-Y, Zhang Z, Liao H, Li Z, Sun C, Chen J, Gong Q. Efficient unidirectional launching of surface plasmons by a cascade asymmetric-groove structure. Nanoscale [Internet]. 2016;8:6777-6782. 访问链接
Yu P, Xing X, Wang T. Electrochemical performance and charge transfer rate of boron doped diamond with different oxidation extent. Acta Scientiarum Naturalium Universitatis Pekinensis. 2016;52:911-18.
Wang J, Wang N, Huang H, Duan W. Electronic properties of SnTe-class topological crystalline insulator materials. Chin. Phys. B 25, 117313 (2016). 2016.
Yin C, Bi Y, Yu C, Wei K. Eliminating Direction Specificity in Visuomotor Learning. Journal of Neuroscience [Internet]. 2016;36:3839-47. 访问链接Abstract
The generalization of learning offers a unique window for investigating the nature of motor learning. Error-based motor learning reportedly cannot generalize to distant directions because the aftereffects are direction specific. This direction specificity is often regarded as evidence that motor adaptation is model-based learning, and is constrained by neuronal tuning characteristics in the primary motor cortices and the cerebellum. However, recent evidence indicates that motor adaptation also involves model-free learning and explicit strategy learning. Using rotation paradigms, here we demonstrate that savings (faster relearning), which is closely related to model-free learning and explicit strategy learning, is also direction specific. However, this new direction specificity can be abolished when the participants receive exposure to the generalization directions via an irrelevant visuomotor gain-learning task. Control evidence indicates that this exposure effect is weakened when direction error signals are absent during gain learning. Therefore, the direction specificity in visuomotor learning is not solely related to model-based learning; it may also result from the impeded expression of model-free learning and explicit strategy learning with untrained directions. Our findings provide new insights into the mechanisms underlying motor learning, and may have important implications for practical applications such as motor rehabilitation. SIGNIFICANCE STATEMENT: Motor learning is more useful if it generalizes to untrained scenarios when needed, especially for sports training and motor rehabilitation. However, as a form of motor learning, motor adaptation is typically direction specific. Here we first show that savings with motor adaptation, an index for model-free learning and explicit strategy learning in motor learning, is also direction specific. However, the participants' additional exposure to untrained directions via an irrelevant gain-learning task can enable the complete generalization of learning. Our findings challenge existing models of motor generalization and may have important implications for practical applications.
Jinxia Wang, Qiuqiong Huang JHSR. Managing Water on China's Farms for a Sustainable Future: Institutions, Policies and the Transformation of Irrigation under Scarcity. Elsevier; 2016.

Pages