In this letter, a plasma-free etch stop structure is developed for GaN HEMT toward enhancement-mode operation. The self-terminated precision gate recess is realized by inserting a thin AlN/GaN bilayer in the AlGaN barrier layer. The gate recess is stopped automatically at the GaN insertion layer after high-temperature oxidation and wet etch, leaving a thin AlGaN barrier to maintain a quantum well channel that is normally pinched off. With addition of an Al2O3 gate dielectric, quasi normally OFF GaN MOSHEMTs have been fabricated with high threshold uniformity and low ON-resistance comparable with the normally ON devices on the same wafer. A high channel mobility of 1400 cm(2)/V . s was obtained due to the preservation of the high electron mobility in the quantum-well channel under the gate.
The genetic code expansion strategy allowed incorporation of unnatural amino acids (UAAs) bearing diverse functional groups into proteins, providing a powerful toolkit for protein manipulation in living cells. We report a multifunctional UAA, Nε-p-azidobenzyloxycarbonyl lysine (PABK), that possesses a panel of unique properties capable of fulfilling various protein manipulation purposes. In addition to being used as a bioorthogonal ligation handle, an infrared probe and a photo-affinity reagent, PABK was shown to be chemically decaged by trans-cyclooctenols via a strain-promoted 1,3-dipolar cycloaddition, which provides a new bioorthogonal cleavage strategy for intracellular protein activation. The biocompatibility and efficiency of this method were demonstrated by decaging of a PABK-caged firefly luciferase under living conditions. We further extended this method to chemically rescue a bacterial toxin OspF inside mammalian host cells.
Abstract Sensitivity analysis is a primary approach used in mathematical modeling to identify important factors that control the response dynamics in a model. In this paper, we applied the Morris sensitivity analysis method to identify the important factors governing the dynamics in a complex 3-dimensional water quality model. The water quality model was developed using the Environmental fluid dynamics code (EFDC) to simulate the fate and transport of nutrients and algal dynamics in Lake Dianchi, one of the most polluted large lakes in China. The analysis focused on the response of four water quality constituents, including chlorophyll-a, dissolved oxygen, total nitrogen, and total phosphorus, to 47 parameters and 7 external driving forces. We used Morris sensitivity analysis with different sample sizes and factor perturbation ranges to study the sensitivity with regard to different output metrics of the water quality model, and we analyzed the consistency between different sensitivity scenarios. In addition to the analysis with aggregate outputs, a spatiotemporal variability analysis was performed to understand the spatial heterogeneity and temporal distribution of sensitivities. Our results indicated that it is important to consider multiple characteristics in a sensitivity analysis, and we have identified a robust set of sensitive factors in the water quality model that will be useful for systematic model parameter identification and uncertainty analysis.
By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm(2)/Vs with an electron density of 9.3 x 10(12) cm(-2). The sheet resistance is 313 +/- 4 Omega/square with +/- 1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (similar to 1.2 GPa) is comparable to the value of the thermal tensile stress (similar to 1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality.
The folding and aggregation behavior of a pair of oligo(phenylene ethynylene) (OPE) foldamers are investigated by means of UV/Vis absorption and circular dichroism spectroscopy. With identical OPE backbones, two foldamers, 1 with alkyl side groups and 2 with triethylene glycol side chains, manifest similar helical conformations in solutions in n-hexane and methanol, respectively. However, disparate and competing folding and aggregation processes are observed in alternative solvents. In cyclohexane, oligomer 1 initially adopts the helical conformation, but the self-aggregation of unfolded chains, as a minor component, gradually drives the folding-unfolding transition eventually to the unfolded aggregate state completely. In contrast, in aqueous solution (CH3OH/H2O) both folded and unfolded oligomer 2 appear to undergo self-association; aggregates of the folded chains are thermodynamically more stable. In solutions with a high H2O content, self-aggregation among unfolded oligomers is kinetically favored; these oligomers very slowly transform into aggregates of helical structures with greater thermodynamic stability. The folded-unfolded conformational switch thus takes place with the free (nonaggregated) molecules, and the very slow folding transition is due to the low concentration of molecularly dispersed oligomers.
{ Barium sulfate (BaSO4) is a common scale-forming mineral in natural and engineered systems, yet the rates and mechanisms of heterogeneous BaSO4 nucleation are not understood. To address these, we created idealized interfaces on which to study heterogeneous nucleation rates and mechanisms, which also are good models for organic–water interfaces: self-assembled thin films terminated with different functional groups (i.e., −COOH, −SH, or mixed −SH & COOH) coated on glass slides. BaSO4 precipitation on coatings from Barite-supersaturated solutions (saturation index
Glyoxal (GL) plays a crucial role in the formation of secondary organic aerosols (SOA), because it is highly water soluble and capable of oligomerization. This is the first study to describe irreversible heterogeneous reactions of GL on clean and acidic gas-aged SiO2, a-Al2O3, and CaCO3 particles, as models of real mineral particles, at various relative humidity and without irradiation and gas phase oxidants. A series of products, including oligomers, organosulfates, and organic acids, which contribute to SOA formation, were produced. GL uptake on SO2-aged a-Al2O3 enabled the oxidation of surface S(IV) to S(VI). The presence of adsorbed water on particles favored GL uptake and the formation of oligomers and organosulfate, but it suppressed organic acid formation. In addition, the aging process enhanced the positive effect of adsorbed water on GL uptake. These findings will further our understanding of the GL sink and SOA sources in the atmosphere.