科研成果

2017
Liu XX, Qu H, Huey LG, Wang YH, Sjostedt S, Zeng LM, Lu KD, Wu YS, Ho M, Shao M, et al. High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. Environmental Science & TechnologyEnvironmental Science & TechnologyEnviron Sci Technol. 2017;51:9588-9595.Abstract
Molecular chlorine (Cl-2) and nitryl chloride (GINO(2)) concentrations were measured using chemical ionization mass spectrometry at a rural site over the North China Plain during June 2014. High levels of daytime Cl-2 up to similar to 450 pptv were observed. The average diurnal Cl-2 mixing ratios showed a maximum around noon at pptv. ClNO2 exhibited a strong diurnal variation with early morning maxima reaching ppbv levels and afternoon minima sustained above 60 pptv. A moderate correlation (R-2 = 0.31) between Cl-2 and sulfur dioxide was observed, perhaps indicating a role for power plant emissions in the generation of the observed chlorine. We also observed a strong correlation (R-2 = 0.83) between daytime (10:00-20:00) Cl-2 and ClNO2, which implies that both of them were formed from a similar mechanism. In addition, Cl-2 production is likely associated with a photochemical mechanism as Cl-2 concentrations varied with ozone (O-3) levels. The impact of Cl-2 and ClNO2 as Cl atom sources is investigated using a photochemical box model. We estimated that the produced Cl atoms oxidized slightly more alkanes than OH radicals and enhanced the daily concentrations of peroxy radicals by 15% and the O-3 production rate by 19%.
Wang HC, Lu KD, Chen XR, Zhu QD, Chen Q, Guo S, Jiang MQ, Li X, Shang DJ, Tan ZF, et al. High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science & Technology Letters. 2017;4:416-420.Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) is important to understanding the formation of particulate nitrate (pNO(3)(-)). Measurements of N2O5 in the surface layer taken at an urban site in Beijing are presented here. N2O5 was observed with large day-to-day variability. High N2O5 concentrations were determined during pollution episodes with the co-presence of large aerosol loads. The maximum value was 1.3 ppbv (5 s average), associated with an air mass characterized by a high level of O-3. N2O5 uptake coefficients were estimated to be in the range of 0.025-0.072 using the steady-state lifetime method. As a consequence, the nocturnal pNO(3)(-) formation potential by N2O5 heterogeneous uptake was calculated to be 24-85 mu g m(-3) per night and, on average, 57 mu g m(-3) during days with pollution. This was comparable to or even higher than that formed by the partitioning of HNO3. The results highlight that N2O5 heterogeneous hydrolysis is vital in pNO(3)(-) formation in Beijing.
Wang HC, Lu KD, Chen XR, Zhu QD, Chen Q, Guo S, Jiang MQ, Li X, Shang DJ, Tan ZF, et al. High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science & Technology Letters. 2017;4:416-420.Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) is important to understanding the formation of particulate nitrate (pNO(3)(-)). Measurements of N2O5 in the surface layer taken at an urban site in Beijing are presented here. N2O5 was observed with large day-to-day variability. High N2O5 concentrations were determined during pollution episodes with the co-presence of large aerosol loads. The maximum value was 1.3 ppbv (5 s average), associated with an air mass characterized by a high level of O-3. N2O5 uptake coefficients were estimated to be in the range of 0.025-0.072 using the steady-state lifetime method. As a consequence, the nocturnal pNO(3)(-) formation potential by N2O5 heterogeneous uptake was calculated to be 24-85 mu g m(-3) per night and, on average, 57 mu g m(-3) during days with pollution. This was comparable to or even higher than that formed by the partitioning of HNO3. The results highlight that N2O5 heterogeneous hydrolysis is vital in pNO(3)(-) formation in Beijing.
Wang H, Lu K, Chen X, Zhu Q, Chen Q, Guo S, Jiang M, Li X, Shang D, Tan Z, et al. High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS. 2017;4:416-420.Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) is important to understanding the formation of particulate nitrate (pNO(3)(-)). Measurements of N2O5 in the surface layer taken at an urban site in Beijing are presented here. N2O5 was observed with large day-to-day variability. High N2O5 concentrations were determined during pollution episodes with the co-presence of large aerosol loads. The maximum value was 1.3 ppbv (5 s average), associated with an air mass characterized by a high level of O-3. N2O5 uptake coefficients were estimated to be in the range of 0.025-0.072 using the steady-state lifetime method. As a consequence, the nocturnal pNO(3)(-) formation potential by N2O5 heterogeneous uptake was calculated to be 24-85 mu g m(-3) per night and, on average, 57 mu g m(-3) during days with pollution. This was comparable to or even higher than that formed by the partitioning of HNO3. The results highlight that N2O5 heterogeneous hydrolysis is vital in pNO(3)(-) formation in Beijing.
Wang HC, Lu KD, Chen XR, Zhu QD, Chen Q, Guo S, Jiang MQ, Li X, Shang DJ, Tan ZF, et al. High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science & Technology LettersEnvironmental Science & Technology LettersEnvironmental Science & Technology Letters. 2017;4:416-420.Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) is important to understanding the formation of particulate nitrate (pNO(3)(-)). Measurements of N2O5 in the surface layer taken at an urban site in Beijing are presented here. N2O5 was observed with large day-to-day variability. High N2O5 concentrations were determined during pollution episodes with the co-presence of large aerosol loads. The maximum value was 1.3 ppbv (5 s average), associated with an air mass characterized by a high level of O-3. N2O5 uptake coefficients were estimated to be in the range of 0.025-0.072 using the steady-state lifetime method. As a consequence, the nocturnal pNO(3)(-) formation potential by N2O5 heterogeneous uptake was calculated to be 24-85 mu g m(-3) per night and, on average, 57 mu g m(-3) during days with pollution. This was comparable to or even higher than that formed by the partitioning of HNO3. The results highlight that N2O5 heterogeneous hydrolysis is vital in pNO(3)(-) formation in Beijing.
Wang H, Lu K, Chen X, Zhu Q, Chen Q, Guo S, Jiang M, Li X, Shang D, Tan Z, et al. High N2O5 concentrations observed in urban Beijing: Implications of a large nitrate formation pathway. Environ. Sci. Technol. Lett. 2017;4(10):416–420.Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) is important to understanding the formation of particulate nitrate (pNO3–). Measurements of N2O5 in the surface layer taken at an urban site in Beijing are presented here. N2O5 was observed with large day-to-day variability. High N2O5 concentrations were determined during pollution episodes with the co-presence of large aerosol loads. The maximum value was 1.3 ppbv (5 s average), associated with an air mass characterized by a high level of O3. N2O5 uptake coefficients were estimated to be in the range of 0.025–0.072 using the steady-state lifetime method. As a consequence, the nocturnal pNO3– formation potential by N2O5 heterogeneous uptake was calculated to be 24–85 μg m–3 per night and, on average, 57 μg m–3 during days with pollution. This was comparable to or even higher than that formed by the partitioning of HNO3. The results highlight that N2O5 heterogeneous hydrolysis is vital in pNO3– formation in Beijing.
Wang H, Lu K, Chen X, Zhu Q, Chen Q, Guo S, Jiang M, Li X, Shang D, Tan Z, et al. High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science & Technology Letters. 2017;4(10):416-420.Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) is important to understanding the formation of particulate nitrate (pNO(3)(-)). Measurements of N2O5 in the surface layer taken at an urban site in Beijing are presented here. N2O5 was observed with large day-to-day variability. High N2O5 concentrations were determined during pollution episodes with the co-presence of large aerosol loads. The maximum value was 1.3 ppbv (5 s average), associated with an air mass characterized by a high level of O-3. N2O5 uptake coefficients were estimated to be in the range of 0.025-0.072 using the steady-state lifetime method. As a consequence, the nocturnal pNO(3)(-) formation potential by N2O5 heterogeneous uptake was calculated to be 24-85 mu g m(-3) per night and, on average, 57 mu g m(-3) during days with pollution. This was comparable to or even higher than that formed by the partitioning of HNO3. The results highlight that N2O5 heterogeneous hydrolysis is vital in pNO(3)(-) formation in Beijing.
Huang M, Xiong X, Li T, Wu Y. High performance transistors based on two dimensional materials. In: Qin YJ, Hong ZL, Tang TA 2017 Ieee 12th International Conference on Asic. ; 2017. pp. 1053-1056. 访问链接
Song H, Li T, Zhang J, Zhou Y, Luo J, Chen C, Yang B, Ge C, Wu Y, Tang J. Highly Anisotropic Sb2Se3 Nanosheets: Gentle Exfoliation from the Bulk Precursors Possessing 1D Crystal Structure. Advanced Materials [Internet]. 2017;29. 访问链接
Yuan J, Wu Y, Ellingsen SP, Evans, Neal J. II, Henkel C, Wang K, Liu H-L, Liu T, Li J-Z, Zavagno A. High-mass Starless Clumps in the Inner Galactic Plane: The Sample and Dust Properties. \apjs. 2017;231:11.
Song W, Hu RH, Shou YR, Gong Z, Yu JQ, Lin C, Ma WJ, Zhao YY, Lu HY, Yan XQ. High-Yield High-Efficiency Positron Generation in High-Z Metal Targets Irradiated by Laser Produced Electrons from Near-Critical Density Plasmas. Chinese Physics Letters. 2017;34:085201.Abstract
An improved indirect scheme for laser positron generation is proposed. The positron yields in high-$Z$ metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are investigated numerically. It is found that the positron yield is mainly affected by the number of electrons of energies up to several hundreds of MeV. Using near-critical density targets for electron acceleration, the number of high energy electrons can be increased dramatically. Through start-to-end simulations, it is shown that up to $6.78\times10^{10}$ positrons can be generated with state-of-the-art Joule-class femtosecond laser systems.
Wang Q, Su X, Shrestha N, Liu Y, Wang S, Xu X, Wang Z. Historical factors shaped species diversity and composition of Salix in eastern Asia. Scientific Reports. 2017;7:42038.
Zheng L, Ma Y, Wang Y, Xiao L, Zhang F, Yang H. Hole Blocking Layer-Free Perovskite Solar Cells with over 15% Efficiency, in 8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016).Vol 105. Appl Energy Innovat Inst; Malardalen UNiv; China Assoc Sci & Technologies; HOME Program; Sichuan Univ; Jiangsu Univ; China Univ Min & Technol; Tianjin Univ; Tongji Univ; SW Jiaotong Univ; Xian Jiaotong Univ; Collaborat Innovat Ctr Elect Vehicles Beijing; ; 2017:188-193.Abstract
The past five years have witnessed the significant breakthrough of perovskite solar cells (PSCs). High certificated power conversion efficiency (PCE) of 22.1% was achieved in a short time after the inorganic-organic perovskite was firstly used as the light absorber in the solar cells. It is believed that PSCs now become one of the most promising photovoltaic in the new-generation solar cells, which may rival silicon based solar cells. In this article, simplified planar perovskite solar cells without a hole-blocking layer were fabricated by a two-step spin-coating method, and the highest PCE of 15.1% was achieved with an average PCE of 13.6%. Moreover, it is found that the hysteresis effect is reduced in this kind of devices. The research on improved performance for the PSCs with simplified device architecture is very important both for understanding the working mechanism of cells, and for fabricating low-cost and high-performance PSCs to approach commercial applications. (C) 2017 Published by Elsevier Ltd.
Yuan C, He X, Kim Y. Home Ownership, Housing Price and Social Security Expenditure. China Economic Review. 2017;46:290-305.
Xu Y, Shen Z, Ying L, Wang Z, Huang J, Zang R, Jiang Y. Hotspot analyses indicate significant conservation gaps for evergreen broadleaved woody plants in China. Scientific Reports. 2017;7:1859.Abstract
Evergreen broadleaved woody plants (EBWPs) are dominant components in forests and savanna of the global tropic and subtropic regions. Southern China possesses the largest continuous area of subtropical EBWPs distribution, harboring a high proportion of endemic species. Hotspot and gap analyses are effective methods for analyzing the spatial pattern of biodiversity and conservation and were used here for EBWPs in China. Based on a distribution data set of 6,265 EBWPs with a spatial resolution of 50 × 50 km, we measured diversity of EBWPs in China using four indices: species richness, corrected weighted endemism, relative phylogenetic diversity, and phylogenetic endemism. According to the results based on 10% threshold, 15.73% of China’s land area was identified as hotspots using at least one diversity index. Only 2.14% of China’s land area was identified as hotspots for EBWPs by all four metrics simultaneously. Most of the hotspots locate in southern mountains. Moreover, we found substantial conservation gaps for Chinese EBWPs. Only 25.43% of the hotspots are covered by existing nature reserves by more than 10% of their area. We suggest to promote the establishment and management of nature reserve system within the hotspot gaps.
Huang Y, Du W, Chen Y, Shen G, Su S, Lin N, Shen H, Zhu D, Yuan C, Duan Y, et al. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China. Environmental Pollution [Internet]. 2017;231:635-643. 访问链接
Yang YD, Shao M, Kessel S, Li Y, Lu KD, Lu SH, Williams J, Zhang YH, Zeng LM, Noelscher AC, et al. How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2017;17:7127-7142.Abstract
Total OH reactivity measurements were conducted on the Peking University campus (Beijing) in August 2013 and in Heshan (Guangdong province) from October to November 2014. The daily median OH reactivity was 20 +/- 11 s(-1) in Beijing and 31 +/- 20 s(-1) in Heshan, respectively. The data in Beijing showed a distinct diurnal pattern with the maxima over 27 s(-1) in the early morning and minima below 16 s(-1) in the afternoon. The diurnal pattern in Heshan was not as evident as in Beijing. Missing reactivity, defined as the difference between measured and calculated OH reactivity, was observed at both sites, with 21% missing reactivity in Beijing and 32% missing reactivity in Heshan. Unmeasured primary species, such as branched alkenes, could contribute to missing reactivity in Beijing, especially during morning rush hours. An observation-based model with the RACM2 (Regional Atmospheric Chemical Mechanism version 2) was used to understand the daytime missing reactivity in Beijing by adding unmeasured oxygenated volatile organic compounds and simulated intermediates of the degradation from primary volatile organic compounds (VOCs). However, the model could not find a convincing explanation for the missing reactivity in Heshan, where the ambient air was found to be more aged, and the missing reactivity was presumably attributed to oxidized species, such as unmeasured aldehydes, acids and dicarbonyls. The ozone production efficiency was 21% higher in Beijing and 30% higher in Heshan when the model was constrained by the measured reactivity, compared to the calculations with measured and modeled species included, indicating the importance of quantifying the OH reactivity for better understanding ozone chemistry.
Hua S, Yu X, Li F, Duan J, Ji H, Liu W. Hydrogen titanate nanosheets with both adsorptive and photocatalytic properties used for organic dyes removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;516:211-218.
Wang Z, Xiao C, Niu B, Deng L, Liu Y. Identify sectors' role on the embedded CO2 transfer networks through China's regional trade. ECOLOGICAL INDICATORS. 2017;80:114-123.Abstract
This study developed a framework for combining multi-regional input-output analysis and network indicators to assess the interregional CO2 flows in China. The interregional CO2 flows of eight regions were calculated and visualized based on a multiregional input-output (MRIO) model for China. The focus of the research was intermediate use. The results of the network indicators showed that refined petroleum, coke, nuclear fuel and chemical products (07), and basic metals and fabricated metal sectors (09) played key roles in the complex networks. and these sectors in most regions controlled a large share of CO2 transfer by functioning as key hubs and authorities. They along with commerce, transport, storage, and post (16) acted as agents that brokered the CO2 flows within and between regions. The roles of some other industrial sectors were also identified, e.g., construction (15) functioned as the largest authority. The results demonstrated the importance and effectiveness of network indicators for identifying the characteristics of CO2 emissions embedded in the domestic supply chain, and provided new information relevant to policy implementation.
Sun X, Wang X, Wang P, Sheng B, Li M, Su J, Zhang J, Liu F, Rong X, Xu F, et al. Identifying a doping type of semiconductor nanowires by photoassisted kelvin probe force microscopy as exemplified for GaN nanowires. Optical Materials Express. 2017;7:904–912.

Pages