科研成果

2017
Sun W, Li Y, Xiao Y, Zhao Z, Ye S, Rao H, Ting H, Bian Z, Xiao L, Huang C, et al. An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. ORGANIC ELECTRONICS. 2017;46:22-27.
Sun W, Li Y, Xiao Y, Zhao Z, Ye S, Rao H, Ting H, Bian Z, Xiao L, Huang C, et al. An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. ORGANIC ELECTRONICS. 2017;46:22-27.Abstract
Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) is one of the most widely used hole transport layers (HTL) in inverted perovskite solar cells (PSCs) due to its simple solution-processed ability, high transparency, and conductivity. However, PEDOT: PSS-based devices suffer a lower open-circuit voltage (V-oc) than devices with the conventional structure. To address this issue, we fabricated ammonia-modified PEDOT: PSS films by simply doping PEDOT: PSS solution with different ratio of ammonia. The acidity of PEDOT: PSS can be neutralized by the doped ammonia, which inhibits the ion-exchange reaction between PSS-H and CH3NH3I, thus retarding the reduction of the work function for PEDOT: PSS to some extent. As a result, a superior power conversion efficiency (PCE) of 15.5% was obtained for the device based on the ammonia-doped PEDOT: PSS HTL than that of the pristine PEDOT: PSS-based device. We ascribe the PCE enhancement to the increased Voc and fill factor (FF), which is attributed not only to the better energy-level alignment between the ammonia-modified PEDOT: PSS film and perovskite layer but also to the increased grain size and crystallinity of perovskite film. (C) 2017 Published by Elsevier B.V.
Liu YJ, Lu YQ, Yang XS, Zheng XL, Wen SH, Wang F, Vidal X, Zhao JB, Liu DM, Zhou ZG, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature [Internet]. 2017;543(7644):229-233. 访问链接Abstract
Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power(1-3). At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level(4,5). When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths(6-9), with single-nanoparticle sensitivity(10-13), which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable H-3(4) level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable H-3(4) level, resulting in population inversion relative to the H-3(6) ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the H-3(4)-> H-3(6) transition, can trigger amplified stimulated emission to discharge the H-3(4) intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the resolution that can be practically achieved by such techniques.
Tao L, Zhu K, Zhu JG, Xu XH, Lin C, Ma WJ, Lu HY, Zhao YY, Lu YR, Chen JE, et al. An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams. Physics in Medicine and Biology [Internet]. 2017;62:5200-5212. 访问链接Abstract
With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.
Yang Y, Zhang P. Analyzing Patterns of Contribution to User-generated Tag Hierarchies Based on Core User Types. ASIST '17 Proceedings. 2017.
Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media
Yang W, Wang Y, Shang J, Liu K, Sharma P, Liu J, Li B. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media. Chemosphere. 2017.
Bateman AP, Gong Z, Harder TH, de Sá SS, Wang B, Castillo P, China S, Liu Y, O'Brien RE, Palm BB, et al. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics [Internet]. 2017;17(3):1759–1773. Link
XIAO L. The Application of Knowledge Management in Organizational Restructuring of Academic Libraries: A Case Study of Peking University Library. IFLA open session, in IFLA World Library and Information Congress 2017 (83rd IFLA General Conference and Assembly). Wrocław, Poland : IFLA Library; 2017. 访问链接
Pan F, Yu Y, Xu A, Xia D, Sun Y, Cai Z, Liu W, Fu J. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community. Journal of Hazardous Materials. 2017;340:36-46.
Shi W, Nolte CG, Loughlin DH, Ou Y, Smith SJ. Assessing the Energy and Emissions Implications of Alternative Population Scenarios Using a State-Level Integrated Assessment Model. AGU Fall Meeting Abstracts. 2017;2017:GC13B-0786.
Rossi R, Yang W, Setti L, Logan BE. Assessment of a metal–organic framework catalyst in air cathode microbial fuel cells over time with different buffers and solutions. Bioresource technology. 2017;233:399-405.
Rossi R, Yang W, Setti L, Logan BE. Assessment of a metal–organic framework catalyst in air cathode microbial fuel cells over time with different buffers and solutions. Bioresource technology. 2017;233:399–405.
Altemose B, Robson MG, Kipen HM, Strickland PO, Meng QY, Gong JC, Huang W, Wang GF, Rich DQ, Zhu T, et al. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress. Journal of Exposure Science and Environmental Epidemiology. 2017;27:244-250.Abstract
Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.
Jennings L, Yang F, Otupiri E, Akinlo A, Okunlola M, Hindin M. Association of household savings and expected future means with delivery using a skilled birth attendant in Ghana and Nigeria: a cross-sectional analysis. Maternal and child health journal. 2017;21(1):85-95.
Day DB, Xiang J, Mo J, Li F, Chung M, Gong J, Weschler CJ, Ohman-Strickland PA, Sundell J, Weng W, et al. Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults. JAMA Intern Med. 2017;177:1344-1353.Abstract
Importance: Exposure to ozone has been associated with cardiovascular mortality, but the underlying biological mechanisms are not yet understood. Objective: To examine the association between ozone exposure and cardiopulmonary pathophysiologic mechanisms. Design, Setting, and Participants: A longitudinal study involving 89 healthy adult participants living on a work campus in Changsha City, China, was conducted from December 1, 2014, to January 31, 2015. This unique quasiexperimental setting allowed for better characterization of air pollutant exposure effects because the participants spent most of their time in controlled indoor environments. Concentrations of indoor and outdoor ozone, along with the copollutants particulate matter, nitrogen dioxide, and sulfur dioxide, were monitored throughout the study period and then combined with time-activity information and filtration conditions of each residence and office to estimate 24-hour and 2-week combined indoor and outdoor mean exposure concentrations. Associations between each exposure measure and outcome measure were analyzed using single-pollutant and 2-pollutant linear mixed models controlling for ambient temperature, secondhand smoke exposure, and personal-level time-varying covariates. Main Outcomes and Measures: Biomarkers indicative of inflammation and oxidative stress, arterial stiffness, blood pressure, thrombotic factors, and spirometry were measured at 4 sessions. Results: Of the 89 participants, 25 (28%) were women and the mean (SD) age was 31.5 (7.6) years. The 24-hour ozone exposure concentrations ranged from 1.4 to 19.4 parts per billion (ppb), corresponding to outdoor concentrations ranging from 4.3 to 47.9 ppb. Within this range, in models controlling for a second copollutant and other potential confounders, a 10-ppb increase in 24-hour ozone was associated with mean increases of 36.3% (95% CI, 29.9%-43.0%) in the level of platelet activation marker soluble P-selectin, 2.8% (95% CI, 0.6%-5.1%) in diastolic blood pressure, 18.1% (95% CI, 4.5%-33.5%) in pulmonary inflammation markers fractional exhaled nitric oxide, and 31.0% (95% CI, 0.2%-71.1%) in exhaled breath condensate nitrite and nitrate as well as a -9.5% (95% CI, -17.7% to -1.4%) decrease in arterial stiffness marker augmentation index. A 10-ppb increase in 2-week ozone was associated with increases of 61.1% (95% CI, 37.8%-88.2%) in soluble P-selectin level and 126.2% (95% CI, 12.1%-356.2%) in exhaled breath condensate nitrite and nitrate level. Other measured biomarkers, including spirometry, showed no significant associations with either 24-hour ozone or 2-week ozone exposures. Conclusions and Relevance: Short-term ozone exposure at levels not associated with lung function changes was associated with platelet activation and blood pressure increases, suggesting a possible mechanism by which ozone may affect cardiovascular health.
Sun KX, Song J, Liu K, Fang K, Wang L, Wang XY, Li J, Tang X, Wu YQ, Qin XY, et al. Associations between homocysteine metabolism related SNPs and carotid intima-media thickness: a Chinese sib pair study. Journal of Thrombosis and ThrombolysisJournal of Thrombosis and ThrombolysisJournal of Thrombosis and Thrombolysis. 2017;43:401-410.Abstract
Carotid intima-media thickness (CIMT) is a good surrogate for atherosclerosis. Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. We aim to investigate the relationships between homocysteine (Hcy) related biochemical indexes and CIMT, the associations between Hcy related SNPs and CIMT, as well as the potential gene-gene interactions. The present study recruited full siblings (186 eligible families with 424 individuals) with no history of cardiovascular events from a rural area of Beijing. We examined CIMT, intima-media thickness for common carotid artery (CCA-IMT) and carotid bifurcation, tested plasma levels for Hcy, vitamin B6 (VB6), vitamin B12 (VB12) and folic acid (FA), and genotyped 9 SNPs on MTHFR, MTR, MTRR, BHMT, SHMT1, CBS genes. Associations between SNPs and biochemical indexes and CIMT indexes were analyzed using family-based association test analysis. We used multi-level mixed-effects regression model to verify SNP-CIMT associations and to explore the potential genegene interactions. VB6, VB12 and FA were negatively correlated with CIMT indexes (p < 0.05). rs2851391 T allele was associated with decreased plasma VB12 levels (p = 0.036). In FABT, CBS rs2851391 was significantly associated with CCA-IMT (p = 0.021) and CIMT (p = 0.019). In multi-level mixed-effects regression model, CBS rs2851391 was positively significantly associated with CCA-IMT (Coef = 0.032, se = 0.009, raw p < 0.001) after Bonferoni correction (corrected a = 0.0056). Genegene interactions were found between CBS rs2851391 and BHMT rs10037045 for CCA-IMT (p = 0.011), as well as between CBS rs2851391 and MTR rs1805087 for CCA-IMT (p = 0.007) and CIMT (p = 0.022). Significant associations are found between Hcy metabolism related genetic polymorphisms, biochemical indexes and CIMT indexes. There are complex interactions between genetic polymorphisms for CCA-IMT and CIMT.
Gao X, Zhang Y, Brenner H. Associations of Helicobacter pylori infection and chronic atrophic gastritis with accelerated epigenetic ageing in older adults. Br J Cancer [Internet]. 2017;117:1211-1214. 访问链接Abstract
BACKGROUND: Helicobacter pylori (HP) infection and chronic atrophic gastritis (CAG) have shown strong associations with the development of gastric cancer. This study aimed to examine whether both risk factors are associated with accelerated epigenetic ageing, as determined by the 'DNA methylation age', in a population-based study of older adults (n=1477). METHODS: Serological measurements of HP antibodies and pepsinogen I and II for CAG definition were obtained by ELISA kits. Whole blood DNA methylation profiles were measured by Illumina Human Methylation450K Beadchip. DNA methylation ages were calculated by two algorithms proposed by Horvath and Hannum et al. RESULTS: After adjusting for potential covariates in linear regression models, we found that HP infection, infection with virulent HP strains (CagA+) and severe CAG were significantly associated with an increase in DNA methylation age by approximately 0.4, 0.6 and 1 year (all P-values <0.05), respectively. CONCLUSIONS: Our study indicates that both CagA+ HP infection and CAG go along with accelerated epigenetic ageing.
Gao X, Gao X, Zhang Y, Breitling LP, Schottker B, Brenner H. Associations of self-reported smoking, cotinine levels and epigenetic smoking indicators with oxidative stress among older adults: a population-based study. Eur J Epidemiol [Internet]. 2017;32:443-456. 访问链接Abstract
Tobacco smoking and oxidative stress (OS) are both related to a wide spectrum of adverse age-related health outcomes, but their association is not yet well-established. We examined the associations of self-reported smoking indicators, serum cotinine levels and smoking-related DNA methylation biomarkers with two urinary proxy markers of OS, 8-isoprostane (8-iso) and 8-hydroxy-2'-deoxyguanosine (8-oxodG), in two independent subsets of older adults recruited in Germany (discovery set: n = 978, validation set: n = 531). We obtained DNA methylation profiles in whole blood samples by Illumina Human Methylation450K Beadchip and measured the urinary levels of both OS markers using commercial ELISA kits. After controlling for potential confounders, current smoking, cumulative smoking exposure (pack-years) and serum cotinine levels (ng/ml) were strongly associated with 8-iso levels (p values <0.0001, 0.004 and 0.001, respectively). Of 151 previously identified smoking-related CpG sites, 71 loci were associated with 8-iso levels after correction for multiple testing (FDR < 0.05) in the validation phase and were designated as loci related to 8-iso levels defined OS. In addition, serum cotinine levels, cumulative smoking exposure and a smoking index (SI) based on the 71 identified loci manifested monotonic associations with 8-iso levels. However, we did not observe any associations between these smoking indicators and 8-oxodG levels. In conclusion, this study suggests that smoking-related epigenetic alterations are closely correlated with smoking-induced OS. The identified CpG sites could potentially be prognostic epigenetic markers of OS and OS-related health outcomes. Our findings and the underlying mechanisms should be followed up in further, preferably longitudinal studies.
Tatematsu K'ichi, Liu T, Ohashi S, Sanhueza P, Nguyen Lu'o'ng Q, Hirota T, Liu S-Y, Hirano N, Choi M, Kang M, et al. Astrochemical Properties of Planck Cold Clumps. \apjs. 2017;228:12.
Zhang YX, Qiao B, Xu XR, Chang HX, Zhang H, Lu HY, Yu MY, Zhou CT, Zhu SP, He XT. Attosecond light pulses generation along the target surface driven by obliquely-incident lasers. Physics of Plasmas. 2017;24:123119.Abstract
A practical approach to achieve strong coherent synchrotron emissions (CSE) in relativistic laser-plasma interaction is proposed, where a plane target with its electron density satisfying the self-similar parameter S similar or equal to n(e0)/a(0)n(c) = 1 is obliquely irradiated by a P-polarized laser pulse. In this case, electrons at the target surface are periodically dragged out into the vacuum by the laser field component perpendicular to the target surface, resulting in the formation of a series of dense electron bunches propagating along the target surface. Intense CSE is generated by these electron bunches under acceleration by the laser field component parallel to the target surface. Two-dimensional particle-in-cell simulations show that an intense attosecond light pulse at intensity 9.1 x 10(20) W/cm(2) (electric field strength similar to 41% as that of the drive laser) can be obtained through such CSE. In the high-order harmonics with 15 omega(0) < omega(n) < 500 omega(0) (omega(0) is the laser frequency), the power spectrum of the emission scales as I(n) similar to n(-1.8) and the conversion efficiency from laser to emission reaches similar to 10(-2). Published by AIP Publishing.

Pages