科研成果

2023
Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight
Liu F, Zhou P, Hou Y, Tan H, Liang Y, Liang J, Zhang Q, Guo S, Tong M, Ni J. Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight. Nature Communications [Internet]. 2023;14:4344. 访问链接Abstract
Solar-driven photosynthesis is a sustainable process for the production of hydrogen peroxide, the efficiency of which is plagued by side reactions. Metal-free covalent organic frameworks (COFs) that can form suitable intermediates and inhibit side reactions show great promise to photo-synthesize H2O2. However, the insufficient formation and separation/transfer of photogenerated charges in such materials restricts the efficiency of H2O2 production. Herein, we provide a strategy for the design of donor-acceptor COFs to greatly boost H2O2 photosynthesis. We demonstrate that the optimal intramolecular polarity of COFs, achieved by using suitable amounts of phenyl groups as electron donors, can maximize the free charge generation, which leads to high H2O2 yield rates (605 μmol g−1 h−1) from water, oxygen and visible light without sacrificial agents. Combining in-situ characterization with computational calculations, we describe how the triazine N-sites with optimal N 2p states play a crucial role in H2O activation and selective oxidation into H2O2. We further experimentally demonstrate that H2O2 can be efficiently produced in tap, river or sea water with natural sunlight and air for water decontamination.
Chang J, Ma X, Wang X, Li X. CPFD modeling of hydrodynamics, combustion and NOx emissions in an industrial CFB boiler. Particuology [Internet]. 2023;81:174-188. 访问链接Abstract
The ultra-low NOx emission requirement (50 mg/m3) brings great challenge to CFB boilers in China. To further tap the NOx abatement potential, full understanding the fundamentals behind CFB boilers is needed. To achieve this, a comprehensive CPFD model is established and verified; gas-solid flow, combustion, and NOx emission behavior in an industrial CFB boiler are elaborated; influences of primary air volume and coal particle size on furnace performance are evaluated. Simulation results indicate that there exists a typical core-annular flow structure in the boiler furnace. Furnace temperature is highest in the bottom dense-phase zone (about 950 °C) and decreases gradually along the furnace height. Oxygen-deficient combustion results in high CO concentration and strong reducing atmosphere in the lower furnace. NOx concentration gradually increases in the bottom furnace, reaches maximum at the elevation of secondary air inlet, and then decreases slightly in the upper furnace. Appropriate decreasing the primary air volume and coal particle size would increase the CO concentration and intensify the in-furnace reducing atmosphere, which favors for NOx reduction and low NOx emission from CFB boilers.
Ye C, Lu K, Song H, Mu Y, Chen J, Zhang Y. A critical review of sulfate aerosol formation mechanisms during winter polluted periods. Journal of Environmental Sciences. 2023;123:387-399.
Feng T, Zhou H, Cheng Z, Larkin L, Neupane M. A Critical Review of Thermal Transport across Wide and Ultrawide Bandgap Semiconductor Interfaces. ACS Applied Materials & Interfaces [Internet]. 2023;15(25):29655–29673. 访问链接
Ma Y, An X, Wu Z, Liu P, Lu C. Customer Mistreatment and Employees’ Coping Strategies: A Meta-SEM Analysis. The 83rd Annual Meeting of the Academy of Management. 2023.
Ji Z, Xie J. DAO for curves. [Internet]. 2023. pdf
Wang P, Zhang H, Wu Z, Zhao X, Sun Y, Duan N, Liu Z, Liu W. A data-based review on norfloxacin degradation by persulfate-based advanced oxidation processes: Systematic evaluation and mechanisms. Chinese Chemical Letters [Internet]. 2023;34:108722. 访问链接Abstract
Persulfate-based advanced oxidation processes (AOPs) have obtained increasing attention due to the generation of sulfate radical (SO4•‒) with high reactivity for organic contaminants degradation. Numerous activation methods have been used to activate two common persulfates: peroxymonosulfate (PMS) and peroxydisulfate (PDS). However, the comparisons of activation methods and two oxidants in the comprehensive degradation performance of the target contaminant are still limited. Thus, taking norfloxacin (NOR) as the target contaminant, we proposed five key parameters (the observed pseudo-first-order rate constant, kobs; average mineralization rate, rm; utilization efficiency of catalyst, Ucat; utilization efficiency of oxidant, Uox; and net utilization efficiency of oxidant, Uox’) to quantify the comprehensive degradation performance of NOR. The irradiation affected target pollutants, catalysts, and oxidants, leading to an improved degradation performance of NOR. Various heterogeneous catalysts were compared in terms of the key elements contained. Fe, Co, and Mn-based materials performed better, while carbon-based catalysts performed poorly on NOR degradation. The overall degradation performance of NOR was different for PMS and PDS, which can be ascribed to their varied reaction pathways towards NOR, but stemmed from different properties of PMS and PDS. Besides, the effect of pH on the degradation efficiency of NOR was investigated. A neutral solution was optimal for PMS system, while an acidic solution worked better for PDS system. Finally, we analyzed the molecule structure of NOR by density functional theory (DFT) calculation to study the sites easy to attack. Then, we summarized four typical degradation pathways of NOR in SO4•‒-based AOP systems, including defluorination, piperazine ring cleavage, piperazine ring oxidation, and quinoline group transformation.
Zhao X, Li D, Yu N, Zhang Q, Du J, Zhang M. Daytime Napping and Metabolic Syndrome: A 4-Year Follow-Up Study of Chinese Middle-Aged and Older Adults. Research in Gerontological Nursing [Internet]. 2023:1-10. 访问链接
Jing Y, Sun Y, Wang X, Zhao W, Wu M, Yan F, Ma Y, Ye L, Jia T. DCIM-3DRec: A 3D Reconstruction Accelerator with Digital Computing-in-Memory and Octree-Based Scheduler. IEEE/ACM Int. Symp. on Low Power Electronics and Design (ISLPED) [Internet]. 2023. Links
Fan* X, Chen* PR. Deciphering Life Sciences with “Live” Chemistry—The 2022 Nobel Prize in Chemistry. Science China ChemistryScience China Chemistry. 2023;66:7-9.
Li K, Zhang M, Jia W, Xu L, Huang Y. Deciphering the effects of LDPE microplastic films on diversity, composition and co-occurrence network of soil fungal community. Applied Soil Ecology. 2023.
Li S, Li J, Ferrand TP, ZHOU T, Lv M, Xi Z, Maguire R, Han G, Li J, Bao X, et al. Deep geophysical anomalies beneath the Changbaishan Volcano. Journal of Geophysical Research: Solid Earth. 2023:e2022JB025671.
Fang Z, Qi J, Chen W, Zhang L, Wang J, Tian C, Dai Q, Liu W, Wang L. Defect engineering-mediated Co9S8 with unexpected catalytic selectivity for heterogeneous Fenton-like reaction: Unveiling the generation route of 1O2 in VS active site. Applied Catalysis B: Environmental [Internet]. 2023;338:123084. 访问链接Abstract
Singlet oxygen (1O2) plays a crucial role in Fenton-like reactions due to its high efficiency and selectivity in removing trace organic pollutants from complex water matrices. Defect engineering, which allows the efficient exposure of active sites and optimization of electronic structures, has rapidly emerged as a fundamental strategy for enhancing 1O2 yield. Herein, we introduce tunable sulfur vacancy (VS) density into Co9S8 catalysts for peroxymonosulfate (PMS) activation. The modulation of the octahedral Co (CoS6) and tetrahedral Co (CoS4) electronic structures by VS triggers the unexpected selective generation of 1O2. The VS/PMS system exhibits excellent resistance to interference and highly selective degradation of electron-donating organic pollutants. Experimental and theoretical calculations revealed a new evolutionary route for 1O2 involving two phases (Phase I: HSO5− → *O, Phase II: *O + HSO5− →*OO → 1O2). This study provides a molecular-level understanding of VS-mediated catalytic selectivity for high-efficient decontamination applications.
Yi K, Yang W, Logan BE. Defect free rolling phase inversion activated carbon air cathodes for scale-up electrochemical applications. Chemical Engineering Journal. 2023;454:140411.
Gan P, Sun Y, Li Y, Liu W, Ye J, Tong M, Liang J. The degradation of municipal solid waste incineration leachate by UV/persulfate and UV/H2O2 processes: The different selectivity of SO4•- and •OH. Chemosphere [Internet]. 2023;311:137009. 访问链接Abstract
In this work, the different selectivity of SO4•- and •OH towards municipal solid waste incineration leachates (MSWILs) was studied by a comparative study of UV/persulfate (PS) and UV/H2O2. Results showed SO4•- preferentially mineralized carbon atoms of higher average oxidation state, while •OH showed a two-stage mechanism of partial oxidation and mineralization successively. Electron spin resonance (ESR) analysis showed SO4•- had superior selectivity towards MSWILs than •OH, and Fe(II) would significantly affect the selectivity via forming Fe-MSWILs complex. As the consequence, Fe(II) showed slightly negative effect on UV/PS, but greatly enhanced the performance of UV/H2O2/Fe(II). High concentration of Cl- affected the degradation of non-fluorescent substances by UV/PS, while SO42- and NO3- showed no effect. In contrast, anions showed no effect on UV/H2O2. In addition, •OH preferentially attacked large molecules, but SO4•- showed no selectivity. This study further revealed the selectivity of SO4•- and •OH in the treatment of hypersaline wastewater, and provided theoretical support for the development of targeted technology.
Liang E. Degradation pathways of atrazine by electrochemical oxidation at different current densities: Identifications from compound-specific isotope analysis and DFT calculation. Environmental Pollution. 2023;332:121987.
Tang R, Song K, Gong Y, Sheng D, Zhang Y, Li A, Yan S, Yan S, Zhang J, Tan Y, et al. Detailed Speciation of Semi-Volatile and Intermediate-Volatility Organic Compounds (S/IVOCs) in Marine Fuel Oils Using GC × GC-MS. International Journal of Environmental Research and Public HealthInternational Journal of Environmental Research and Public Health. 2023;20.
Liu Y, ZHOU M, Zhao M, Jing S, Wang H, Lu K, Shen H. Determination of Urban Formaldehyde Emission Ratios in the Shanghai Megacity. Environmental Science & Technology. 2023;57.
Guo F, Shan S, Gong X, Dai C, Quan Z*, Cheng X*, Fan* X. Deuteration Degree-Controllable Methylation via a Cascade Assembly Strategy using Methylamine-Water as Methyl Source. Chemistry – A European Journal. 2023;29:e202301458.Abstract
Abstract We present a novel and effective photocatalytic method for the methylation of ?-diketones with controllable degrees of deuterium incorporation via development of new methyl sources. By utilizing a methylamine-water system as the methyl precursor and a cascade assembly strategy for deuteration degree control, we synthesized methylated compounds with varying degrees of deuterium incorporation, showcasing the versatility of this approach. We examined a range of ?-diketone substrates and synthesized key intermediates for drug and bioactive compounds with varying degrees of deuterium incorporation, ranging from 0 to 3. We also investigated and discussed the postulated reaction pathway. This work demonstrates the utility of readily available reagents, methylamines and water, as a new methyl source, and provides a simple and efficient strategy for the synthesis of degree-controllable deuterium-labelled compounds.
Hobart KD, Feygelson TI, Tadjer MJ, Anderson TJ, Koehler AD, Graham Jr S, Goorsky M, Cheng Z, Yates L, Bai T. Diamond on nanopatterned substrate. 2023.

Pages