Measurements of black carbon (BC) with a high-sensitivity laser-induced incandescence (HS-LII) instrument and a single particle soot photometer (SP2) were conducted upwind, downwind, and while driving on a highway dominated by gasoline vehicles. The results are used with concurrent CO2 measurements to derive fuel-based BC emission factors for real-world average fleet and heavy-duty diesel vehicles separately. The derived emission factors from both instruments are compared, and a low SP2 bias (relative to the HS-LII) is found to be caused by a BC mass mode diameter less than 75 nm, that is most prominent with the gasoline fleet but is not present in the heavy-duty diesel vehicle exhaust on the highway. Results from both the LII and the SP2 demonstrate that the BC emission factors from gasoline vehicles are at least a factor of 2 higher than previous North American measurements, and a factor of 9 higher than currently used emission inventories in Canada, derived with the MOBILE 6.2C model. Conversely, the measured BC emission factor for heavy-duty diesel vehicles is in reasonable agreement with previous measurements. The results suggest that greater attention must be paid to black carbon from gasoline engines to obtain a full understanding of the impact of black carbon on air quality and climate and to devise appropriate mitigation strategies.
Context Air pollution is a risk factor for cardiovascular diseases (CVD), but the underlying biological mechanisms are not well understood.Objective To determine whether markers related to CVD pathophysiological pathways (biomarkers for systemic inflammation and thrombosis, heart rate, and blood pressure) are sensitive to changes in air pollution.Design, Setting, and Participants Using a quasi-experimental opportunity offered by greatly restricted air pollution emissions during the Beijing Olympics, we measured pollutants daily and the outcomes listed below in 125 healthy young adults before, during, and after the 2008 Olympics (June 2-October 30). We used linear mixed effects models to estimate the improvement in outcome levels during the Olympics and the anticipated reversal of outcome levels after pollution controls ended to determine whether changes in outcome levels were associated with changes in pollutant concentrations.Main Outcome Measures C-reactive protein (CRP), fibrinogen, von Willebrand factor, soluble CD40 ligand (sCD40L), soluble P-selectin (sCD62P) concentrations; white blood cell count (WBC); heart rate; and blood pressure.Results Concentrations of particulate and gaseous pollutants decreased substantially (-13% to -60%) from the pre-Olympic period to the during-Olympic period. Using 2-sided tests conducted at the .003 level, we observed statistically significant improvements in sCD62P levels by -34.0% (95% CI, -38.4% to -29.2%; P<.001) from a pre-Olympic mean of 6.29 ng/mL to a during-Olympic mean of 4.16 ng/mL and von Willebrand factor by -13.1% (95% CI, -18.6% to -7.5%; P<.001) from 106.4% to 92.6%. After adjustments for multiple comparisons, changes in the other outcomes were not statistically significant. In the post-Olympic period when pollutant concentrations increased, most outcomes approximated pre-Olympic levels, but only sCD62P and systolic blood pressure were significantly worsened from the during-Olympic period. The fraction of above-detection-limit values for CRP (percentage >= 0.3 mg/L) was reduced from 55% in the pre-Olympic period to 46% in the during-Olympic period and reduced further to 36% in the post-Olympic period. Interquartile range increases in pollutant concentrations were consistently associated with statistically significant increases in fibrinogen, von Willebrand factor, heart rate, sCD62P, and sCD40L concentrations.Conclusions Changes in air pollution levels during the Beijing Olympics were associated with acute changes in biomarkers of inflammation and thrombosis and measures of cardiovascular physiology in healthy young persons. These findings are of uncertain clinical significance. JAMA. 2012;307(19):2068-2078
Polystyrene (PS)-supported diphenylprolinol silyl ethers have been developed as highly active catalysts for the enantioselective a-amination of aldehydes. Understanding the mechanism of catalyst deactivation has led to the development of reaction conditions notably extending catalyst life in repeated recycling (10 cycles; accumulated TON of 480) and has allowed the implementation of a continuous flow alpha-amination process (6 min residence time, 8 h operation).
He CY, Yu BB, Zhu LH, Wu XG, Zheng Y, Zhang B, Yao SH, Wang LL, Li GS, Hao X, et al.Band structures in $^106$Pd. Phys. Rev. C [Internet]. 2012;86:047302. 访问链接
Studies on the macroscopic and microscopic packing properties of nonconvex particles are scarce. As a common concave form, the curved spherocylinder is used in the simulations, and its bending and elongation effects on the random packings are investigated numerically with sphere assembly models and a relaxation algorithm. The aspect ratio is demonstrated to be the main factor regarding the packing density. However, at certain aspect ratios of low densities around 0.3–0.4, the density of curved spherocylinders may increase by 15% more than that of the straight ones, indicating that bending is also a contributor to the packing density. The excluded volume of the curved spherocylinder decreases with the increase of the bending angle, indicating that the excluded volume is applicable in explaining the bending effect on the packing density variation of nonconvex particles. The packings are verified to be randomly distributed in orientation with no significant layering or in-plane order. The local arrangements are further analyzed from the radial distribution function and contact results. The results show that the random packings of nonconvex particles have significant differences and richer characteristics on both the macroscopic and microscopic properties compared with convex objects.
We explore the feasibility of accelerating electron beams up to energies much beyond 1 TeV in a realistic scale and evolution of the beam qualities such as emittance and energy spread at the final beam energy on the order of 100 TeV, using the newly formulated coupled equations describing the beam dynamics and radiative damping of electrons. As an example, we present a design for a 100 TeV laser-plasma accelerator in the operating plasma density n(p) = 10(15) cm(-3) and numerical solutions for evolution of the normalized emittance as well as their analytical solutions. We show that the betatron radiative damping causes very small normalized emittance that promises future applications for the high-energy frontier physics.