科研成果

2019
Lin M, Zhang G, Song S, Li H, Zhang L. The validity of Ti-in-zircon thermometry in low temperature eclogites. Geological Society, London, Special Publications. 2019;474:69-87.
Zhang Z, Ni X, Huang H, Hu L, Liu F. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Physical Review B. 2019;99:115441.
McArdle S, Jones T, Endo S, Li Y, Benjamin SC, Yuan X. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Information. 2019;5(1):1-6.
Jones T, Endo S, McArdle S, Yuan X, Benjamin SC. Variational quantum algorithms for discovering Hamiltonian spectra. Physical Review A. 2019;99(6):062304.
Yan P, Schroeder R. Variations in the adoption and use of mobile social apps in everyday lives in urban and rural China. Mobile Media & Communication [Internet]. 2019;8(3):318–341. 访问链接
Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals
Li J, Hao Y, Simayi M, Shi Y, Xi Z, Xie S. Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals. Atmospheric Chemistry and Physics [Internet]. 2019;19:5905–5921. 访问链接Abstract
\textlessp\textgreater\textlessstrong\textgreaterAbstract.\textless/strong\textgreater Improving the accuracy of the anthropogenic volatile organic compound (VOC) emission inventory is essential for reducing air pollution. In this study, we established an emission inventory of anthropogenic VOCs in the Beijing–Tianjin–Hebei (BTH) region of China for 2015 based on the emission factor (EF) method. Online ambient VOC observations were conducted in one urban area of Beijing in January, April, July, and October, which, respectively, represented winter, spring, summer, and autumn in 2015. Furthermore, the developed emission inventory was evaluated by a comprehensive verification system based on the measurements and satellite retrieval results. Firstly, emissions of the individual species of the emission inventory were evaluated according to the ambient measurements and emission ratios versus carbon monoxide (CO). Secondly, the source structure of the emission inventory was evaluated using source appointment with the Positive Matrix Factorization (PMF) model. Thirdly, the spatial and temporal distribution of the developed emission inventory was evaluated by a satellite-derived emission inventory. According to the results of the emission inventory, the total anthropogenic VOC emissions in the BTH region were 3277.66 Gg in 2015. Online measurements showed that the average mixing ratio of VOCs in Beijing was approximately 49.94 ppbv in 2015, ranging from 10.67 to 245.54 ppbv. The annual emissions for 51 of 56 kinds of non-methane hydrocarbon species derived from the measurements agreed within \textlessspan class="inline-formula"\textgreater±100\textless/span\textgreater % with the results of the emission inventory. Based on the PMF results and the emission inventory, it is evident that vehicle-related emissions dominate the composition of anthropogenic VOCs in Beijing. The spatial correlation between the emission inventory and satellite inversion result was significant (\textlessspan class="inline-formula"\textgreater\textitp<0.01\textless/span\textgreater) with a correlation coefficient of 0.75. However, there were discrepancies between the relative contributions of fuel combustion, emissions of oxygenated VOCs (OVOCs), and halocarbons from the measurements and inventory. To obtain a more accurate emission inventory, we propose the investigation of the household coal consumption, the adjustment of EFs based on the latest pollution control policies, and the verification of the source profiles of OVOCs and halocarbons.\textless/p\textgreater
Wu Q, Du Y, Huang Z, Gu J, Leung JYS, Mai B, Xiao T, Liu W, Fu J. Vertical profile of soil/sediment pollution and microbial community change by e-waste recycling operation. Science of The Total Environment [Internet]. 2019;669:1001 - 1010. 访问链接Abstract
The present study aims to assess the effect of electronic waste (e-waste) recycling on microbial community and the underlying modulation mechanism. Core soil/sediment samples were collected from an abandoned e-waste burning site and neighboring farmland/stream sites in Guiyu, China. High concentrations and health risks of toxic heavy metals, particularly, Sb and Sn, and halogenated flame retardants (HFRs), including decabromodiphenyl ether (BDE 209) and decabromodiphenyl ethane (DBDPE) were mostly retained at the top surface layers of soils/sediments (0–30 cm) after more than one year of natural vertical diffusion and microbe-facilitated biodegradation. Heavy metals, such as Ag, Cd, Cu, Pb, Sb, and Sn, played a critical role for the reduction of microbial diversity. This is the first study reporting the open burning of e-waste caused an obvious heat effect and enriched thermophilic/mesophilic microbes in local area. The acid washing during e-waste recycling process may result in the enrichment of acidophilic microbes. This investigation showed that e-waste processing operation resulted in not only severe pollution of the soils/sediments by various pollutants, but also reduction of microbial diversity that was difficult to self-store by the local ecosystem.
Liu W, Li Y, Liu F, Jiang W, Zhang D, Liang J. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Research [Internet]. 2019;150:431 - 441. 访问链接Abstract
Metal-free photocatalysts have attracted growing concern in recent years. In this work, a new class of carbon quantum dots (CQDs) modified porous graphitic carbon nitride (g-C3N4) is synthesized via a facile polymerization method. With the optimal CQDs loading, the CQDs modified g-C3N4 exhibits ∼15 times higher degradation kinetic towards diclofenac (DCF) than that of pure g-C3N4. The enhanced photocatalytic activity can be ascribed to the improved separation of charge carriers as well as the tuned band structure. Moreover, a photosensitation-like mechanism is proposed to elucidate the photo-generated electrons transfer and reactive radicals formation. CQDs are anchored to g-C3N4 surface via CO bond, which provide channels for the preferential transfer of photo-excited electrons on DCF molecule to the conduction band of g-C3N4. Superoxide radical (·O2−) dominates the degradation of DCF, while holes (h+) show a negligible contribution. Density functional theory (DFT) calculation successfully predicts that the sites on DCF molecule with high Fukui index (f0) are preferable to be attacked by radicals. DCF degradation pathway mainly includes ring hydroxylation, ring closure and CN bond cleavage processes. Acute toxicity estimation indicates the formation of less toxic intermediates/products compared to DCF after photocatalysis. Moreover, the hybrid photocatalysts exhibit good reusability in five consecutive cycles. This work not only proposes a deep insight into photosensitation-like mechanism in the photocatalysis system by using C3N4-based materials, but also develops new photocatalysts for potential application on removal of emerging organic pollutants from waters and wastewaters.
Tian M, Hu B, Yang H, Tang C, Wang M, Gao Q, Xiong X, Zhang Z, Li T, Li X, et al. Wafer scale mapping and statistical analysis of radio frequency characteristics in highly uniform CVD graphene transistors. Advanced Electronic Materials. 2019;5:1800711.
Xiang L, Xia F, Zhang H, Liu Y, Liu F, Liang X, Hu Y. Wafer-Scale High-Yield Manufacturing of Degradable Electronics for Environmental Monitoring. Advanced Functional Materials. 2019.
Xiang L, Xia F, Zhang H, Liu Y, Liu F, Liang X, Hu Y. Wafer-Scale High-Yield Manufacturing of Degradable Electronics for Environmental Monitoring. Advanced Functional Materials. 2019.
Wavelength-dependent nonsequential double ionization of magnesium by intense femtosecond laser pulses. PHYSICAL REVIEW A [Internet]. 2019;100(3). 访问链接Abstract
We report on a systematic investigation of wavelength scaling strong-field double ionization of Mg in intense laser fields. A significant decrease of nonsequential double ionization (NSDI) yield with increasing wavelength from 800–2000 nm is observed. Our data is well reproduced by a three-dimensional Monte Carlo simulation considering recollision impact excitation cross section. We demonstrate that the NSDI of Mg mainly occurs via the first ionic excited state Mg + * ( 3 p 2 P 3 / 2 , 1 / 2 ) pumped by returning electron impact process. The recollision impact direct ionization pathway plays a minor role here. The wavelength dependence of the NSDI ratio is due to the recollision energy-dependent excitation cross section as well as the electron wave packet diffusion effects, both sensitively depending on the wavelength. Our work represents a step towards strong-field double ionization experiments on Mg in the long wavelength limit and sheds light on the NSDI mechanism of alkaline-earth metal atoms.
Shang Z, Zhou F, Smith P, Saikawa E, Ciais P, Chang J, Tian H, Grosso SDJ, Ito A, Chen M, et al. Weakened growth of cropland N2O emissions in China associated with nationwide policy interventions. Global Change Biology. 2019;25(25):3706-3719.
Ren Z, Zheng Q, Wang H, Guo H, Miao L, Wan J, Xu C, Cheng S, Zhang H. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy [Internet]. 2019:104243. 访问链接Abstract
With wearable electronic devices arising, a flexible hybrid energy harvester that is capable to continuously harvest multi-types of energy and seamlessly integrate with human body draws great attentions. In this paper, we introduce a novel self-cleaning flexible hybrid energy harvesting system which includes a groove-shape micro/nanostructured haze thin film (GHF), a flexible power management circuit, and a hybrid energy harvester is integrated by a flexible organic solar cells (F-OSC) with an autonomous single-electrode triboelectric nanogenerator (AS-TENG) via one common-electrode. This system allows for simutaneously harvesting both solar and mechanical energy through two separate parts (i.e. the top F-OSC and the bottom AS-TENG). The flexible power management circuit simultaneously utilizes the large current of the solar cell and the high voltage of the TENG. In addition, GHF with excellent optical properties, large surface area and super-hydrophobicity has been introduced into the hybrid cell, which serves not only as a triboelectric layer to increase the surface charge density of the AS-TENG, but also as a light-trapping layer to improve the photoelectric conversion efficiency (PCE) of the F-OSC. Meanwhile, GHF helps this device to achieve unique functions, such as dust-proof, self-cleaning and self-encapsulating, which significantly improve the stability and repeatability of hybrid power unit in practical applications.
Xu B, Lin Y, TANG X, Li S, Shen L, Sun N, Pan DZ. WellGAN: Generative-Adversarial-Network-Guided Well Generation for Analog/Mixed-Signal Circuit Layout, in 2019 56th ACM/IEEE Design Automation Conference (DAC).; 2019:1-6.Abstract
In back-end analog/mixed-signal (AMS) design flow, well generation persists as a fundamental challenge for layout compactness, routing complexity, circuit performance and robustness. The immaturity of AMS layout automation tools comes to a large extent from the difficulty in comprehending and incorporating designer expertise. To mimic the behavior of experienced designers in well generation, we propose a generative adversarial network (GAN) guided well generation framework with a post-refinement stage leveraging the previous high-quality manually-crafted layouts. Guiding regions for wells are first created by a trained GAN model, after which the well generation results are legalized through post-refinement to satisfy design rules. Experimental results show that the proposed technique is able to generate wells close to manual designs with comparable post-layout circuit performance.
Zhou Y, Jin K-H, Huang H, Wang Z, Liu F. Weyl points created by a three-dimensional flat band. Physical Review B. 2019;99:201105.
Li D, Jiang T, Lin W, Jiang M. Which Has Better Visual Quality: The Clear Blue Sky or a Blurry Animal?. IEEE Trans. Multim. [Internet]. 2019;21:1221–1234. 访问链接
Xiong Y, Shao S. The Wigner branching random walk: Efficient implementation and performance evaluation. Communications in Computational Physics [Internet]. 2019;25(3):871-910. 访问链接Abstract
To implement the Wigner branching random walk, the particle carrying a signed weight, either $-1$ or $+1$, is more friendly to data storage and arithmetic manipulations than that taking a real-valued weight continuously from $-1$ to $+1$. The former is called a signed particle and the latter a weighted particle. In this paper, we propose two efficient strategies to realize the signed-particle implementation. One is to interpret the multiplicative functional as the probability to generate pairs of particles instead of the incremental weight, and the other is to utilize a bootstrap filter to adjust the skewness of particle weights. Performance evaluations on the Gaussian barrier scattering (2D) and a Helium-like system (4D) demonstrate the feasibility of both strategies and the variance reduction property of the second approach. We provide an improvement of the first signed-particle implementation that partially alleviates the restriction on the time step and perform a thorough theoretical and numerical comparison among all the existing signed-particle implementations. Details on implementing the importance sampling according to the quasi-probability density and an efficient resampling or particle reduction are also provided.
Ma X, Tan Z, Lu K, Yang X, Liu Y, Li S, Li X, Chen S, Novelli A, Cho C, et al. Winter photochemistry in Beijing: Observation and model simulation of OH and HO2 radicals at an urban site. Science of the Total Environment. 2019;685:85-95.Abstract
A field campaign was conducted from November to December 2017 at the campus of Peking University (PKU) to investigate the formation mechanism of the winter air pollution in Beijing with the measurement of hydroxyl and hydroperoxyl radical (OH and HO2) with the support from comprehensive observation of trace gases compounds. The extent of air pollution depends on meteorological conditions. The daily maximum OH radical concentrations are on average 2.0 × 106 cm−3 and 1.5 × 106 cm−3 during the clean and polluted episodes, respectively. The daily maximum HO2 radical concentrations are on average 0.4 × 108 cm−3 and 0.3 × 108 cm−3 during the clean and polluted episodes, respectively (diurnal averaged for one hour bin). A box model based on RACM2-LIM1 mechanism can reproduce the OH concentrations but underestimate the HO2 concentrations by 50% during the clean episode. The OH and HO2 concentrations are underestimated by 50% and 12 folds during the polluted episode, respectively. Strong dependence on nitric oxide (NO) concentration is found for both observed and modeled HO2 concentrations, with the modeled HO2 decreasing more rapidly than observed HO2, leading to severe HO2 underestimation at higher NO concentrations. The OH reactivity is calculated from measured and modeled species and inorganic compounds (carbon monoxide (CO), NO, and nitrogen dioxide (NO2)) make up 69%–76% of the calculated OH reactivity. The photochemical oxidation rate denoted by the OH loss rate increases by 3 times from the clean to polluted episodes, indicating the strong oxidation capacity in polluted conditions. The comparison between measurements at PKU site and a suburban site from one previous study shows that chemical conditions are similar in both urban and suburban areas. Hence, the strong oxidation capacity and its potential contribution to the pollution bursts are relatively homogeneous over the whole Beijing city and its surrounding areas.
Ma XF, Tan ZF, Lu KD, Yang XP, Liu YH, Li SL, Li X, Chen SY, Novelli A, Cho CM. Winter photochemistry in Beijing: Observation and model simulation of OH and HO2 radicals at an urban site. Science of the Total Environment [Internet]. 2019;(685):85-95. 访问链接

Pages