已发表论文

19.  Xiaoyang Xie, Zhanjing Tao, Chunhai Jiao, and Min Zhang*, An efficient fifth-order interpolation-based Hermite WENO scheme for hyperbolic conservation laws, Journal of Computational Physics, 523 (2025), 113673.

18. Lidan Zhao, Zhanjing Tao, and Min Zhang*. Well-balanced fifth-order finite volume WENO schemes with constant subtraction technique for shallow water equationsJournal of Scientific Computing(2025) 102:32.

17. Panpan Guo, Guang-an Zou*, and Min Zhang*.  An energy-dissipation finite element pressure-correction scheme for the hydrodynamics of smectic-A liquid crystals, International Journal of Numerical Analysis and Modeling, to appear.

16. Mengmeng Li, Guang-an Zou*, and Min Zhang*.  An efficient unconditional energy-stable finite element method for the electro-hydrodynamic equations, Computers and Mathematics with Applications, 176 (2024), 447-468.

15. Weizhang Huang, Ruo Li, Jianxian Qiu, and Min Zhang*A well-balanced moving mesh discontinuous Galerkin method for the Ripa model on triangular meshesJournal of Computational Physics, 487 (2023), 112147. 

14. Zhuang Zhao and Min Zhang*Well-balanced fifth-order finite difference Hermite WENO scheme for the shallow water equationsJournal of Computational Physics, 475 (2023), 111860. 

13. Min Zhang and Zhuang Zhao*A fifth-order finite difference HWENO scheme combined with limiter for hyperbolic conservation lawsJournal of Computational Physics, 472 (2023), 111676.  

12. Min Zhang, Weizhang Huang, and Jianxian Qiu*. A study on CFL conditions for the DG solution of conservation laws on adaptive moving meshesNumerical Mathematics: Theory, Methods and Applications, 16 (2023), 111-139.

11. Muyassar Ahmat, Suyuan Ni, Min Zhang*, and Zhuang Zhao. A sixth-order finite difference HWENO scheme for nonlinear degenerate parabolic equationComputers and Mathematics with Applications, 150 (2023), 196-210.

10. Min Zhang, Weizhang Huang, and Jianxian Qiu*. A well-balanced positivity-preserving quasi-Lagrange moving mesh DG method for the shallow water equationsCommunications in Computational Physics, 31 (2022), 94-130.  

9. Cassidy Krause, Weizhang Huang, David Mechem, Erik Van Vleck*, and Min Zhang.  A metric tensor approach to data assimilation with adaptive moving meshesJournal of Computational Physics, 466 (2022), 111407.  

8. Min Zhang, Weizhang Huang, and Jianxian Qiu*. A high-order well-balanced positivity-preserving moving mesh DG method for the shallow water equations with non-flat bottom topography, Journal of Scientific Computing, (2021), 87:88.

7. Min Zhang, Weizhang Huang, and Jianxian Qiu*. High-order conservative positivity-preserving DG-interpolation for deforming meshes and application to moving mesh DG simulation of radiative transfer, SIAM Journal on Scientific Computing, 42 (2020), A3109-A3135.  

6. Min Zhang, Juan Cheng, Weizhang Huang, and Jianxian Qiu*. An adaptive moving mesh discontinuous Galerkin method for the radiative transfer equation, Communications in Computational Physics, 27 (2020), 1140-1173.   

5. Min Zhang, Yang Liu*, and Hong Li. High-order local discontinuous Galerkin algorithm with time second-order schemes for the two-dimensional nonlinear fractional diffusion equationCommunications on Applied Mathematics and Computation, 2 (2020), 613-640.

4. Min Zhang, Juan Cheng, and Jianxian Qiu*. High order positivity-preserving discontinuous Galerkin schemes for radiative transfer equations on triangular meshesJournal of Computational Physics397 (2019), 108811. 

3.Min Zhang, Yang Liu*, and Hong Li. High-order local discontinuous Galerkin method for fractal mobile/immobile transport equation with Caputo-Fabrizio fractional derivativeNumerical Methods for Partial Differential Equations35 (2019), 1588-1612.

2. Yang Liu*, Min Zhang, Hong Li, and Jichun Li. High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equationComputers and Mathematics with Applications73 (2017), 1298-1314.

1. Jinfeng Wang, Min Zhang, Yang Liu*, and Hong Li. Finite difference/H1-Galerkin MFE procedure for a fractional water wave model, Journal of Applied Analysis and Computation, 6 (2016), 409-428.