Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification

Citation:

Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, et al. Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification. ACS APPLIED MATERIALS & INTERFACES. 2019;11:9149-9155.

摘要:

High-efficiency organic-inorganic hybrid perovskite solar cells have experienced rapid development and attracted significant attention in recent years. However, instability to an ambient environment such as moisture is a facile challenge for the application of perovskite solar cells. Herein, 1,8-octanediammonium iodide (ODAI) is employed to construct a two-dimensional modified interface by in situ combined with residual PbI2 on the formamidinium lead iodide (FAPbI(3)) perovskite surface. The ODA(2+ )ion seems to lie horizontally on the surface of a three-dimensional perovskite due to its substitution for two FA(+) ions, which could protect the bulk perovskite more effectively. The unencapsulated perovskite solar cells showed notably improved stability, which remained 92% of its initial efficiency after storing in an ambient environment for 120 days. In addition, a higher open-circuit voltage of 1.13 V compared to that of the control device (1.04 V) was obtained due to the interface energy level modification and defect passivation. A champion power conversion efficiency of 21.18% was therefore obtained with a stabilized power output of 20.64% at the maximum power point for planar perovskite solar cells.
SCI被引用次数:30.